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Abstract

The growth of the web, authoring software, and electronic publishing has led to the emergence

of a new type of document collection that is decentralised, amorphous, dynamic, and anarchic.

In such collections, redundancy is a significant issue. Documents can spread and propagate

across such collections without any control or moderation. Redundancy can interfere with

the information retrieval process, leading to decreased user amenity in accessing information

from these collections, and thus must be effectively managed.

The precise definition of redundancy varies with the application. We restrict ourselves

to documents that are co-derivative: those that share a common heritage, and hence contain

passages of common text. We explore document fingerprinting, a well-known technique for

the detection of co-derivative document pairs. Our new lossless fingerprinting algorithm

improves the effectiveness of a range of document fingerprinting approaches. We empirically

show that our algorithm can be highly effective at discovering co-derivative document pairs

in large collections.

We study the occurrence and management of redundancy in a range of application do-

mains. On the web, we find that document fingerprinting is able to identify widespread

redundancy, and that this redundancy has a significant detrimental effect on the quality of

search results. Based on user studies, we suggest that redundancy is most appropriately

managed as a postprocessing step on the ranked list and explain how and why this should

be done.

In the genomic area of sequence homology search, we explain why the existing techniques

for redundancy discovery are increasingly inefficient, and present a critique of the current

approaches to redundancy management. We show how document fingerprinting with a modi-

fied version of our algorithm provides significant efficiency improvements, and propose a new

approach to redundancy management based on wildcards. We demonstrate that our scheme

provides the benefits of existing techniques but does not have their deficiencies.



2

Redundancy in distributed information retrieval systems — where different parts of the

collection are searched by autonomous servers — cannot be effectively managed using tra-

ditional fingerprinting techniques. We thus propose a new data structure, the grainy hash

vector, for redundancy detection and management in this environment. We show in pre-

liminary tests that the grainy hash vector is able to accurately detect a good proportion of

redundant document pairs while maintaining low resource usage.



Chapter 1

Introduction

For much of human history the propagation of knowledge and information has been a costly

affair. For a document to be made available to a wide audience, it had to undergo a laborious

publication process before being physically distributed through standard channels such as

newsagents, booksellers and libraries. The complexity and expense of this process ensured

that documents were carefully prepared before publication, and that publication occurred

according to well-coordinated procedures. Thus, the libraries that represented the collective

record of human knowledge consisted largely of an orderly accumulation of documents of

well-known provenance, and of generally high quality.

In recent decades, the emergence of information technology — in particular the growing

pervasiveness of digital documents and networking — has all but removed these barriers

to publication. This has resulted in a fundamental change to the way in which human

knowledge is accumulated. Liberated from the constraints imposed on them by the formal

publication and distribution process, documents can now be cheaply and easily made public

by individuals. Freed from the need for physical aggregation in libraries, electronic documents

can form emergent, ad hoc collections with no central control.

In contrast to the rigid, centralised, carefully curated, and relatively static libraries of pro-

fessionally authored and edited documents that have traditionally codified human knowledge,

the new type of collection is decentralised, amorphous and dynamic. It contains documents,

often self-published, of varying quality. The archetype of this new type of collection is the

world-wide web, a vast and eclectic aggregation of knowledge and nonsense from around the

planet. However, such collections exist in many other contexts, such as in enterprises and on

personal computers.

3
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The revolution in publication brought about by information technology presents new

opportunities. In particular, the ability of computers to manipulate digital information allows

us to analyse and search repositories of knowledge in unprecedented ways. However, the new

type of collection also presents difficult challenges. The organic and decentralised nature of

such collections means that there is no possibility for moderation or quality control, nor for

organisation or curation. Whereas an information scientist working on a search system for a

library has the luxury of dealing with a well-annotated, structured, and categorised dataset,

the information scientist designing a search system for a digital collection must expect their

dataset to be loosely annotated and chaotic. Novel approaches to collection management are

necessary in order for search to be effective in such a domain.

One of the challenges of the new type of collection is management of redundancy. The

technologies that enable the rapid transfer of information around the world also result in a

massive amount of data duplication, because data in digital documents can be copied with

trivial ease. Combined with the lack of centralised control of digital collections, this means

that collections are likely to contain a large number of document-pairs that are duplicates or

near-duplicates of each other, and are therefore mutually redundant.

The presence of redundancy in collections can prove a serious hindrance to the efficient

discovery and utilisation of information. In standard ad hoc search, repetition of effectively

the same document in the ranked result list reduces user amenity. In distributed search, this

problem is compounded by collection overlap, which is when the same documents appear in

multiple independent collections that participate in the search process. In genomic search,

the presence of redundancy has the potential to distort the search process itself.

In this thesis, we address questions concerning the definition, detection and management

of redundancy in digital document collections.

How do we define redundancy?

When a concept seems to have an intuitive or ‘common-sense’ meaning it is tempting to

neglect to provide an explicit definition. Much previous work addressing the issue of re-

dundancy management in document collections talks of algorithms for finding ‘duplicates’

or ‘near-duplicates’. In the absence of an independent definition, it is easy to succumb to

the temptation of defining the problem in terms of the solution. Near-duplication is often

implicitly defined as the property that is detected by the proposed algorithm, or in terms of

some measure that is easily calculated by the algorithm.
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We are careful to define redundancy in a functionally-driven way: that is, we define

redundancy for a particular application in terms that are appropriate to the intended use-

case for that application. In this way, we are able to evaluate the effectiveness of our tools

for redundancy management with reference to the anticipated use of the tools, rather than

with respect to an arbitrary or circular definition.

In Chapter 5 we address the management of redundancy in results from web searches.

In this situation we wish to shield the user from reading multiple documents that essentially

contain the same content, but at the same time avoid suppressing novel information that may

be of interest. Guided by a use-case in which redundant documents are not indexed, we define

the relation of content equivalence, which exists between pairs of documents that contain the

same content. We conduct a user study to correlate content equivalence with the score

produced by a document fingerprinting system. The outcome of this user study prompted

us to formulate an alternative definition of redundancy, which we call conditional content

equivalence. This relation was more accurately identified by our fingerprinting system, but

required a different approach to document management: all documents must be indexed, and

redundancy management must take place as a post-processing step on a ranked list. Our

experience demonstrated that definitions have an impact on practice, and thus must not be

neglected.

In Chapter 6 we improve on an existing technique for management of redundancy in ge-

nomic sequence databases. Our new methodology uses wildcards in order to search redundant

sequences in parallel. As our aim is improved search speed, we implicitly define redundancy

between sequences as the property that allows them to efficiently form a cluster. Outside the

context of our implementation, our definition of redundancy would probably be meaningless.

However, it is appropriate for our use-case. Because we evaluate success in terms of reduced

execution times rather than directly by the number of redundant sequence-pairs identified,

we avoid the issue of circularity in our definition.

How do we detect redundancy in text documents?

We hypothesize that the best candidate tools for managing redundancy are those that are

aimed at detecting pairs of documents that are co-derivative. A pair of documents is co-

derived if they share a common heritage: either one document is derived from the other, or

both are derived from a third ancestor document. It is reasonable to conjecture that the set

of redundant documents in a collection is a subset of the set of those that are co-derivatives.
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There are several methodologies for the detection of co-derivation between documents in

a collection. We investigate three broad categories of technique: approximate string match-

ing, term-vector based algorithms, and document fingerprinting. While approximate string

matching and term-vector techniques can both be effective for the search problem in which

the co-derivatives of a query document are located, they cannot be efficiently implemented

for the more difficult discovery problem in which all co-derivative document pairs in the

collection must be identified.

Document fingerprinting techniques work by creating a ‘fingerprint’ for each document.

A document fingerprint contains one or more feature descriptors from the document such

that pairs of co-derivatives are likely to share some features in their respective fingerprints,

whereas unrelated documents are unlikely to do so. Document fingerprinting techniques can

be categorised by the type of feature they index. We focus on the most common group of

algorithms, which make use of features called chunks. Chunks are contiguous text sequences

extracted by passing a sliding window over each document. The intuition is simple: a pair

of co-derived documents are quite likely to have many chunks in common, whereas this is

extremely unlikely in unrelated documents.

Due to the large number of candidate features generated by chunk-based fingerprinting

algorithms, practical implementations must generally make use of a selection heuristic that

selects a subset of the available chunks to form the representative fingerprint for each docu-

ment. While selection heuristics play an important role in limiting the resource consumption

of chunk-based fingerprinting algorithms, they have the effect of introducing lossiness to the

fingerprinting system. With current selection heuristics, there is a distinct possibility that

even closely co-derived documents may be overlooked by the system.

In order to address this problem, we have developed spex, the first lossless selection

heuristic for chunk-based fingerprinting systems. Lossless chunk selection is possible because

singleton chunks — those only appearing once in the collection, and often composing a sizable

majority of the total — have no influence on the outcome of the co-derivative discovery

process. Thus, spex is able to significantly reduce the total size of the fingerprinting index

by using a memory-efficient iterative hashing technique to keep track of non-singleton chunks.

Although spex has been successfully used to index collections of up to 18 GB, there are

some concerns about resource consumption and scalability. In particular, we were unable to

index the 426 GB GOV2 collection on any of the hardware at our disposal. This was not so

much due to the raw size of the collection as the level of redundancy within it. Spex operates

by identifying and discarding singleton chunks. Given the highly redundant nature of GOV2,
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such chunks constituted a relatively small proportion of the overall pool. As such, spex was

relatively ineffective. This sensitivity to the overall level of redundancy in the collection is

a fundamental deficiency in the nature of the algorithm, and suggests that spex should be

restricted to domains where the degree of redundancy is at most moderate.

How should redundancy be managed for web search?

On the web, document redundancy exists on a large scale and in many contexts. Examples

include website mirroring, document syndication, automatically generated text, per-site doc-

umentation, boilerplate text, multiple formats, aliasing, and spam pages. The consequences

of this redundancy include larger indexes and slower search times, but most significantly a

degradation in the utility of ranked lists to the user. A ranked list containing many copies

of the same document — even if it is highly relevant — is not ideal from the perspective of

the user who, in general, wants to view each document only once.

Modern ranking algorithms and most current metrics for the evaluation of search engine

quality derive from the probability ranking principle, which states that documents should

optimally be ranked in decreasing order of likelihood of relevance to the user. The conse-

quence is that common practice in both ranking and evaluation is to treat the relevance

of a document with respect to the query as the only property of interest. Thus, the issue

of inter-document redundancy has been something of a blind-spot in information retrieval

research.

We study the effect of redundancy on search in two web collections that were created

for the TREC initiative.1 Those are the 18 GB GOV1 collection and the 426 GB GOV2

collection, both crawls of the .gov domain. Using deco— our fingerprinting package incor-

porating the spex algorithm — on these collections we were able to demonstrate that there

was a high level of content equivalence amongst documents in both collections. This confirms

that redundancy is a serious problem in the management of web collections.

To more directly evaluate the effect of this collection redundancy on search results, we

made use of data from the 2004 TREC terabyte track. The ad hoc search task of the

track required participants to submit ranked lists for each of 50 topics created for the track.

Documents were then judged for relevance using a standard pooling process. Running deco

on the documents from the judgement pool allowed us to estimate the degree of redundancy

1The TREC initiative is funded by the United States National Institute of Science and Technology with

the aim of creating a standard infrastructure for the evaluation of information retrieval systems. For more

information, see Section 2.4.
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amongst judged relevant documents that were returned by the best efforts of leading research

search systems. Applying these results to the runs themselves allowed us to estimate the

degree to which search engine effectiveness was being overestimated for this task and, as a

corollary, the degree to which effectiveness could be improved if search engines made use of

a fingerprinting or similar tool in order to manage redundancy in result lists.

Our evaluation of the GOV1 and GOV2 collections discovered a high level of redundancy

in both collections. In particular, we were able to show that more than 25% of documents in

the GOV2 collection were redundant. While the level of redundancy in the ranked search

runs was lower than it was in the collection as a whole, it was still quite high: approximately

15% of all relevant documents appearing in the ranked lists were equivalent to another docu-

ment higher up in the list. Interestingly, the level of redundancy was actually higher amongst

documents that were judged to be relevant than those that were not judged relevant. This

results in a significant inflation of reported search effectiveness values. We estimated that re-

ported effectiveness was about 20% higher than would be the case if redundancy were taken

into account. The failure of commonly-used evaluation metrics to take redundancy into

account has stifled progress in redundancy management, as improvements in this area do not

lead to improved metric values. Given a metric that takes proper account of the effect of

redundancy, the picture looks quite different. Using such a metric in Chapter 5, we estimate

that many search systems could improve their effectiveness by more than 15% if redundancy

were properly managed.

Using deco to discover co-derivation relationships between documents in the judged pool

for the 2004 terabyte track also gave us a convenient opportunity to evaluate the quality of

the expert relevance judgements for the documents in the pool. The results were concerning:

more than 12% of potentially relevant documents in content-equivalent clusters had been

inconsistently judged.

How should redundancy be managed for genomic search?

Sequence homology search is an important tool for biologists, who use it to infer information

regarding the structure and function of new genetic material by comparing it to the existing

body of knowledge.

Comprehensive databases of genomic sequences such as GenBank contain sequences sub-

mitted by laboratories from all over the world. Despite the fact that exact duplicates are

generally removed prior to distribution, such collections continue to exhibit a high degree of
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redundancy in the form of near-duplicate sequences.

While repetitive result lists are an irritating consequence of redundancy in genomic se-

quence databases, redundancy also has more serious consequences in this context. Many

genomic tools such as the popular BLAST tool make use of collection statistics during the

search process. A high degree of redundancy skews these statistics and potentially reduces

search effectiveness. This is especially true for profile-based tools such as PSI-BLAST.

Furthermore, the need for sensitive approximate-matching alignment measures during

the genomic search process means that such tools are generally several orders of magnitude

slower than a term-based text search engine on collections of similar size. Thus, the inflation

in database size brought about by internal redundancy leads directly to slower searches, often

increasing the time taken to return a result by several seconds.

In the past, redundancy in genomic sequence databases has typically been managed by

the creation of representative-sequence databases (RSDBs), in which redundant sequences

are clustered and only one sequence from each cluster — the representative — is retained.

The resulting database is guaranteed to contain no sequence-pairs with a level of identity

exceeding the clustering threshold. When compared to the source database, RSDBs are

smaller, produce less repetitive results, and lead to less statistical skew and profile corruption.

Current techniques for RSDB construction use fast pairwise comparison techniques to

calculate similarity between all (or in some cases most) pairs of sequences. Despite their

speed, however, the number of comparisons grows quadratically in the size of the collection;

thus, as collections grow, these construction techniques are becoming less feasible. We have

investigated the possibility of using document fingerprinting, which does not suffer from

quadratic complexity in computational cost, to discover pairs of sequences exceeding the

identity threshold for clustering.

Document fingerprinting techniques have not been previously applied to genomic se-

quences, but only trivial changes are required in order for a working system to be constructed.

However, the vastly different characteristics of genomic sequence strings when compared to

natural-language documents present some challenges to the efficiency of fingerprinting. We

introduce the slotted spex selection heuristic, a derivative of the spex algorithm that is

particularly suitable for this domain. Slotted spex builds on the existing spex algorithm

by adding a level of controlled lossiness. The result is a lower load on the hashtables, faster

execution time, and a smaller index, while still guaranteeing that all contiguous sequences

above a specified threshold length will be detected. Our experiments show that slotted spex

is remarkably accurate at isolating pairs of sequences with a high degree of identity. Even
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with parameterisations that make the heuristic significantly more selective, we are able to

achieve near-perfect accuracy at discovering sequence pairs with an identity of 90% or above.

Using slotted spex as the basis for clustering allowed us to build a RSDB of the GenBank

nonredundant protein database in one-sixth the time of the fastest existing method.

While RSDBs are undeniably useful for certain applications, they are somewhat unsatis-

factory as a general method for the management of redundancy in genomic sequence collec-

tions. In many cases, searching against an RSDB will result in markedly lower effectiveness

than would search against the full database. Because significant numbers of sequences have

been simply removed from the RSDB, the best results for a given query may be absent from

the database. We introduce a new integrated approach for managing redundancy in genomic

databanks, which consists of novel techniques for clustering and sequence representation, and

an adaptation of the BLAST search process. Our approach is based on representing clusters

of similar sequences using a special union-sequence, in which points of difference between se-

quences in the cluster are indicated using a wildcard. We are able to simultaneously represent

all sequences in the cluster using this single union-sequence. When using our new approach

we are able to reduce the size of the GenBank nonredundant protein database by over 25%

and reduce search time by over 20% without any significant change to search effectiveness.

How should redundancy be managed in a distributed context?

In a distributed search system, users search multiple autonomous systems at once by inter-

acting with a broker system. The broker takes the user’s query, chooses the systems to which

the query will be sent, and merges the results from the various sources in order to present

the user with a single ranked list of results.

Alongside the problems of intra-collection redundancy, distributed search systems face

the additional issue of inter-collection redundancy or collection overlap, in which the same

or highly similar documents appear in more than one of the collections being searched.

Despite the seriousness of the redundancy problem in this context, it has not been previously

addressed beyond the trivial measure of taking hashes to eliminate exact duplicates.

The problem of collection overlap cannot be efficiently solved using the standard chunk-

based fingerprinting techniques discussed above, because the relatively large fingerprints

required for them to be effective would consume an undesirable amount of bandwidth in

a distributed setting. Furthermore, as redundancy management must be performed by the

broker at result-merger time, the computational cost of evaluating pairs of large fingerprints
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would be prohibitive.

We have proposed a new data structure for the problem of redundancy management in

a distributed environment. The grainy hash vector (GHV) is a compact data structure that

encodes a large number of features within a single 32- or 64-bit word using a narrow-hash

representation. We used chunks as features, but the data structure can be used equally

well with other feature types. The small vectors do not place a large burden on network

bandwidth, and the single-word nature of the structures mean that bit-parallelism can be used

to process them extremely rapidly. We demonstrate that GHVs can be used as reasonably

accurate predictors of conditional equivalence for the distributed search context.

1.1 Thesis structure

We present a broad background of relevant work and concepts in Chapter 2. We describe the

co-derivation relation and the search and discovery problems for co-derivatives. The chapter

also includes a discussion of search engines: the principles underlying their operation, the

models and mechanisms used in producing a final ranked list, and the many ways in which

the effectiveness of search engines can be evaluated. We also discuss the fields of distributed

search, approximate string matching, and genomic search methodologies.

In Chapter 3 we investigate the problem of discovering co-derivative relationships be-

tween documents in a collection. After first considering some alternatives, we present a

comprehensive taxonomy of document fingerprinting techniques. We discuss the basic intu-

ition underlying the fingerprinting approach, and show how a range of seemingly disparate

techniques share the same fundamental mechanics. We describe the many choices that can

be made in building a document fingerprinting system, and the consequences of these choices.

We finish the chapter with a discussion of the efficiency aspect of the fingerprinting process.

In Chapter 4 we present spex, our novel algorithm that for the first time allows lossless

selection of chunks (features) in the fingerprinting process. After describing the operation

of the algorithm, we introduce deco, our software package for document fingerprinting that

incorporates spex as well as number of other novel implementational optimisations. After

defining performance metrics for the discovery problem, we perform a series of experiments

that demonstrate the effectiveness of the spex approach.

In Chapter 5 we examine the prevalence of redundancy in web collections, and the im-

pact of such redundancy on the user search experience. We define content equivalence and

conditional content equivalence, and report on the outcomes of a user study correlating these
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relations to scores produced by our fingerprinting system. Using these results, we demon-

strate that redundancy is not only a significant presence in underlying web collections, but

that it also has a real and significant impact on the quality of search results.

We apply document fingerprinting to the management of redundancy in genomic sequence

collections in Chapter 6. We discuss the challenges faced in implementing fingerprinting for

genomic data before describing slotted spex, a modified version of spex that is tailored for

this domain. We demonstrate that fingerprinting is accurate at discovering pairs of sequences

with a high level of identity, and use a tool based on fingerprinting to create representative-

sequence databases (the most popular existing strategy for redundancy management) up to

six times faster than the fastest existing methods. Finally, we present our novel method

for redundancy management in genomic collections, including new techniques for clustering,

representation and search. We demonstrate that using our methodology on a comprehensive

protein sequence database such as GenBank results in a smaller database representation and

searches that are more than 20% faster that when using a standard database representation.

In Chapter 7 we introduce the grainy hash vector (GHV), a new data structure for man-

aging redundancy in cooperative distributed information retrieval systems. We demonstrate

that despite their small size, GHVs are able to effectively identify a significant proportion of

conditionally equivalent document-pairs within ranked lists. We verify empirically that by

taking advantage of bit-parallelism, the comparison of pairs of GHVs consumes few proces-

sor cycles, and thus that their use for merge-time processing of ranked lists is a reasonable

proposition.

We conclude the work, and discuss possibilities for future research, in Chapter 8.



Chapter 2

Background

Our study of the management of redundancy proceeds from a base of existing work, and

traverses several domains within the area of information retrieval. In this chapter we provide

the background and contextual information necessary to interpret the contributions presented

in later chapters.

We found that task definition for this work was more complex that initially thought;

despite the intuitive simplicity of the notion of inter-document redundancy, we discovered

some subtle issues that have not always been successfully negotiated in earlier work. We

discuss these issues, and our approach to defining the task, in Section 2.1.

Hash functions play an important role in a number of the techniques and algorithms

discussed in this thesis. We briefly discuss some pertinent hash functions and their features

in Section 2.2.

A core focus of our study is the interaction between collection redundancy and the infor-

mation retrieval process. In Section 2.3 we survey the historical and theoretical foundations

underpinning modern information retrieval systems, and discuss the way in which these prin-

ciples influence search-engine design and evaluation.

In Section 2.4 we introduce the TREC initiative for evaluation of information retrieval

systems. We explain the practices followed by TREC for creating robust, reusable datasets

for system evaluation, and describe those tracks most pertinent to our work.

Distributed information retrieval generalises the information retrieval model to situations

in which the user wishes to query across multiple autonomous search systems. This scenario

introduces new complexity to the search process. We discuss the state of the art in this area

in Section 2.5.
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Information retrieval systems are required to operate efficiently over large quantities of

information, and as such use data structures that enable rapid access to specific data. Suffix

structures and inverted indexes, two common data structures that are used for this purpose,

are described in Section 2.6.

In Section 2.7 we discuss a variety of approximate string matching algorithms, which

are designed to efficiently calculate the degree of similarity between non-identical strings.

Such algorithms are a feasible approach to the problem of redundancy identification and,

significantly, form the basis of the sequence homology search tools discussed in Section 2.8.

Sequence homology search is an information retrieval task over genomic sequence data, and

is an important tool in many areas of biology. We introduce the basic approach to this

problem, discuss its limitations, and describe more advanced heuristic systems.

2.1 Defining redundancy

In this thesis, we address the issues surrounding the detection and management of redundancy

within collections. It is reasonable to conjecture that a pair of redundant documents will

in most cases share a substantial portion of text. Thus, our initial stated approach to the

detection of redundancy was to investigate classes of algorithms that are able to identify

documents that share a reasonable amount of text. During this preliminary investigation, it

became clear that this seemingly easy-to-define task presented far more difficulties than were

initially apparent.

Notions such as ‘redundancy’, ‘novelty’, ‘duplication’, or ‘near-duplication’ seem so obvi-

ous and intuitive that most previous works do not define them. Manber (1994), Brin et al.

(1995), Heintze (1996), Sanderson (1997), Lyon et al. (2001), and Schleimer et al. (2003) are

all examples of works in which such terms are not meaningfully defined. It is frequently left

to context and intuition to determine approximately what is meant by the term in question.

In cases where terms are defined, it is often in an unsatisfactory manner. Broder et al.

(1997) describe two set-theoretic measures, resemblance and containment, for estimating the

degree of ‘similarity’ between a pair of documents (see Section 3.6.4), but do not relate these

measures to the notion of near-duplication. They then go on to assume that any document

clusters computed by their system based on a lossy estimate of the resemblance measure are

near-duplicates. This circular definition assures the apparent success of their technique, but

tells us little about what it actually going on. Fetterly et al. (2003) follow Broder et al.

(1997) in defining near-duplication in terms of a metric based on an estimate of resemblance.
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The following is from Chowdhury et al. (2002):

“The general notion is that if a document contains roughly the same semantic

content it is a duplicate whether or not it is a precise syntactic match.”

This definition is vague; worse, it is at odds with an intuitive notion of duplication. This

problem is largely immaterial, however, as the definition is largely ignored in favour of a

system-oriented approach as above.

It is apparent that, while notions such as text reuse and near-duplication are seemingly

intuitive and straightforward, they actually elude simple and decisive definition.

What does it mean to say that a pair of documents share text? It is obvious that the

notion is somehow syntactic — two passages with the same semantics need not contain any

shared text — but the exact syntactic form of shared text is quite difficult to define. Must the

documents contain a single contiguous sequence of text that is identical in both documents?

If so, how long must it be, and why? What if the text were interspersed with other, original

text? If interspersions are allowed, how significant may they be before they fundamentally

alter the text?

The answers to such questions are of necessity subjective. This highlights the difficulty

of defining the notion of shared text in a rigorous fashion. We argue that an alternative

approach is required to defining the problem domain. It seems reasonable to consider that

documents share text if it seems implausible that the text in the two documents could have

been independently written; that is, shared text can be taken as evidence of a shared heritage.

Thus, it makes more sense to define the problem in terms of detecting documents that share

a heritage, rather than the relying on the difficult-to-define notion of shared text.

We define a pair of documents as co-derivative if they have not been independently

written; that is, one document is derived from the other, or both are derived from a third

source, either directly or indirectly (Hoad and Zobel, 2003); an illustration of possible co-

derivation relationships is presentes in Figure 2.1. This definition of co-derivation is a broad

one that encompasses extrinsic evidence, and thus cannot be inferred by merely inspecting

the documents. A more precise definition that makes use only of intrinsic evidence states

that a pair of documents is co-derivative if one document could not plausibly have been

written without reference to the other, or both could not have been written without reference

to a joint common source. Note that, though the definition of co-derivation is concrete,

the co-derivation status of a pair of documents must ultimately be judged by a subjective

process. It is important not to confuse this with the situation described earlier with reference
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Figure 2.1: Three circumstances in which a co-derivation relationship can be said to exist

between a pair of documents A and B: A contains text derived from B; B contains text derived

from A; A and B both contain a portion of text derived from a third document C.

to the notion of shared text, in which it is the definition itself that is open to subjective

interpretation.

The advantage of using co-derivation rather than shared text as the objective of the

problem is that, while individual judgements of co-derivation are subjective, the definition is

precise and objective; with shared text the definition itself is subjective. With co-derivation

as the objective, the performance of a system can be judged against human judgements of a

meaningful concept that reflects the application domain of the problem. This is analogous

to the treatment of relevance in the query-based retrieval domain.

2.1.1 The relationship graph

The task of identifying co-derivation in a document collection is fundamentally a binary

classification task over document pairs: given a pair of documents, we must either classify

them as co-derived or not co-derived. We can thus represent the set of co-derivation relations

in a document collection as an undirected graph, which we call the relationship graph.

Let the relationship graph R for a document collection C be represented by < V, E >

where |V | = |C| and eij ∈ E if and only if i ⊲⊳ j, where ⊲⊳ represents the co-derivation

relationship. That is, each vertex in the relationship graph corresponds to a document in the

collection, and two vertices are joined by an edge if and only if the corresponding documents

are co-derived. The relationship graph for a hypothetical collection of eight documents is

illustrated in Figure 2.2.
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Figure 2.2: An example of a relationship graph for a collection of eight documents.

The relationship graph is a useful tool for visualising the co-derivation structure of a

collection and understanding the nature of problems in the domain of co-derivative detection

(see Chapter 3). It serves as the basis for several techniques for evaluating the quality of

co-derivation classifications, as discussed in Chapter 4.

2.1.2 The search and discovery problems

There are two basic problem scenarios in the domain of co-derivative document detection.

The first scenario is that in which there is a particular document of interest for which we

wish to find all co-derivatives. Such a situation may occur in a document registry when

a particular document is being checked for breach of copyright, or on an intranet when a

user wishes to know whether the copy of a document they possess is the most up-to-date

version. We call this the 1×n or search problem to emphasise that the task in this situation

is to search a collection for documents that are co-derived with a target document, much as

ranked search seeks to find documents that are relevant to a given query.

In the second scenario, there is no natural target document. Rather, we are presented

with a collection of documents and wish to find co-derivation relationships between any pair

of documents in the collection. Such a scenario may occur in the academic domain when

a teacher wishes to check whether any students plagiarised or collaborated on a particular
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assignment, or in the search domain in order to prune an index of duplicate entries. We

call this the n × n or discovery problem to emphasise the fact that the task is to discover

arbitrary co-derivation relationships within a given collection. The problem can alternatively

be described as the task of discovering the structure of the underlying relationship graph for

a document collection.

Note that the discovery problem is a strict superset of the search problem. Having resolved

the discovery problem for a given collection of documents, we automatically have the answers

for all n possible target documents within that collection. Conversely, given an algorithm for

the search problem, the discovery problem can be solved by applying the algorithm n times,

each time with a different document from the collection as a query. Given this relationship

between the two problems, it is obvious that the discovery problem is the more general and

the more difficult to efficiently solve.

The discovery problem is not a traditional clustering task because co-derivation is not

typically a transitive relation. If documents A and B are known to be co-derived and doc-

uments B and C are similarly co-derived, we are not entitled to make the assumption that

A and C are co-derived. To make this more concrete, imagine that document B is a digest-

type document that draws together excerpts from various independently authored sources.

In such a scenario, the above situation obtains. The fact that co-derivation is not transitive

makes the discovery problem a particularly difficult one to tractably solve, and it is often

overlooked. Broder et al. (1997) note that document resemblance is not transitive1 but then

on the very next page proceed to calculate clusters using a union-find structure to compute

transitive closures (Broder et al., 1997, p. 1160).

2.2 Hashing and hash functions

Hashing is a fundamental operation in computer science, widely documented in basic text-

books such as Sedgewick (1998). The task of a hash function is to map input from a universe

U to a range of M values (typically integers) in a deterministic but pseudo-random fash-

ion. Thus, a sequence of inputs should map to a reproducible sequence of values with no

discernible pattern. Hashing is invaluable for many applications in which it is necessary to

uniformly project a set of values onto a smaller space. Hashing is particularly prominent in

implementations of search engines and document fingerprinting algorithms (see Chapter 3).

1“a well-known fact bemoaned by grandparents all over”(Broder et al., 1997, p. 1159)
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2.2.1 Properties of hash functions

We present several properties that are, in addition to computational efficiency, desirable in

classes of functions used for hashing.

Universality

Carter and Wegman (1977) describe a property of classes of hash functions known as uni-

versality. A class of hash functions Π can be considered universal if, for a random function

π ∈ Π, and for any pair of distinct elements x1 and x2, the following holds:

P (π(x1) = π(x2)) ≤
1

|M |

That is, over the class of functions, the collision rate between the hash values of two distinct

elements should be the same as the collision rate for two random samples chosen over the

same space. This provides a degree of assurance that the class of functions is well-behaved in

terms of the characteristics required of a hash function. Note that universality can only be

held applicable across a class of hash functions: guarantees cannot be made for individual

instances of a class, a deficiency that leads to situations in which universal classes of hash

functions contain distinctly poor hash functions (Sarwate, 1980).

Universality can in some cases be proved, though for many practical and useful hash

functions it cannot be. Empirical evidence is never sufficient to demonstrate universality,

as a single counter-example suffices to falsify the claim. Nonetheless, experimentation can

provide a strong basis for belief that a class of functions is universal.

Uniformity

A class of hash functions Π is uniform if for any given π ∈ Π and randomly-selected x ∈ U ,

x is equally likely to hash to any of the possible values in M :

∀m∈MP (π(x) = m) =
1

|M |

Uniformity provides an assurance that, in the average case, a hash function spreads its input

evenly amongst the space of available outcomes.
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Min-wise independence

A class of hash functions Π is min-wise independent (Broder et al., 1998) if, for any given set

of elements X, it is equally probable that any element x ∈ X will be the smallest element

when the set is submitted to a randomly chosen function from that family, π ∈ Π. That is:

P (argmin(π(X)) = x) =
1

|X|

Min-wise independence states that the class of hash functions is unbiased at least with respect

to the identity of the element with the lowest hash value. Min-wise independence is sufficient

for applications in which the aim is to pseudo-randomly select a single element from a set.

This is the case in many situations, some of which we encounter in later chapters.

2.2.2 Classes of hash function

In a situation where resources were not a constraint, a good hash function would consist of

a lookup table mapping all the elements of U to random values within M . However, in such

an artificial situation, hashing would in most cases be unnecessary. Thus, practical hash

functions must be formulaic or algorithmic so that the function description can be compact.

A wide variety of such functions exist, each with different properties; we describe two families

of hash functions in this section: the shift-add-xor class, and Rabin fingerprinting.

Ramakrishna and Zobel (1997) describes a class of hash function called shift-add-xor

that is able to hash any type of digital data and, by virtue of the fact that it relies solely on

computational primitives, can be calculated efficiently on current computers. As the name

suggests, the class uses only the shift, add, and exclusive-or (xor) primitives on the original

input to compute a hash. Though the class does not yield to analysis, their experiments

provide reasonable weight to the conjecture that the class is universal and uniform.

Rabin fingerprinting (Rabin, 1981; Broder, 1993) is a class of hash functions that have

algebraic properties making them useful in applications that call for the hashing of long

overlapping strings. As well as being universal and having reasonably efficient hardware

implementations, Rabin fingerprinting is able to compute the hash for a string that overlaps

an already-hashed string in time proportional to the length of the new portion, rather than

the length of the entire string. This confers a significant speed advantage to applications in

which hashing proceeds in this manner, such as certain string-matching algorithms (Karp

and Rabin, 1987) and some document fingerprinting strategies (see Chapter 3).
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2.3 Information retrieval in text collections

Users refer to documents in order to meet some sort of need for information. In general,

different documents have varying levels of utility when it comes to satisfying a particular

information need. When faced with a large document collection, the user has a dilemma:

though the collection may contain any number of documents satisfactory to the user, they

have no way of locating them. The useful information is effectively inaccessible.

The role of an information retrieval or search system is to make it as easy as possible for

a user to distill information that is useful or of interest out of the vast volume of available

data. In this section we discuss the practical and theoretical considerations underlying the

construction of an effective information retrieval system, as well as some of the many ways

for evaluating their performance.

2.3.1 Boolean search

A Boolean expression is a logical expression consisting of variables taking on the values

true and false, combined using the binary operators and and or, and the unary operator

not. In the context of search, a Boolean query is a Boolean expression in which each of the

variables represents a term. The expression is evaluated for each document in the collection

by setting the value of each variable to true if the term represented by the variable occurs

in the document, and false otherwise. For example, the expression:

(clown or acrobat) and not Adobe

would match all documents that contained one or both of the terms ‘clown’ and ‘acrobat’,

but contained no instances of the term ‘Adobe’.

Boolean search allows a searcher to specify queries of arbitrary complexity, and allows

an experienced searcher with a clearly defined objective and good domain knowledge a high

level of control over their search. However, it leaves much of the work in the search process

to the user.

The Boolean search task effectively resolves to a classification over documents: a well-

formed Boolean query defines an expression over terms where the result set should consist of

all documents that satisfy this expression. What a Boolean search does not do is discriminate

amongst the documents within the set of those that satisfy the query expression: all are

equally valid with respect to the query. While this is satisfactory in a situation where the

result set contains up to a few dozen documents, it is somewhat problematic when the result
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set consists of more documents than the user could hope to inspect. In such a situation,

the search system may have answered the query with complete accuracy. However, to what

degree has the search helped the user in their task?

Though Boolean search automates the process of finding key terms within a large index

and is useful in many search situations, it places the burden of task formulation entirely

on the user. In the case of casual searchers, or searchers operating in unfamilar domains,

this often leads to unsatisfactory search results. In order to further advance the utility of

information retrieval systems, it is necessary to more explicitly model the user and their task,

so that the system can provide more targeted results.

2.3.2 A user model for information retrieval

A user’s interactions with a document collection can be modeled in terms of an information

need. That is, a user has an objective that can be satisfied by acquiring information that

may be present in one or more members of some subset of documents in the collection. The

‘information’ sought by a user may not be informative in any formal sense — for example,

a user may be searching for websites containing scatological jokes — but it is nonetheless

the case that a user will find some documents in the collection more useful than others in

meeting their objective. In this sense, it can be argued that the user is always interested in

finding information of some sort.

Viewed from this perspective, the role of an information retrieval system is to minimise

the effort expended by the user in meeting their information need.

How can this be achieved? The depth and subtlety of natural language, its semantic am-

biguity, and the complex interactions between documents, coupled with the subjective and

nebulous nature of a user’s information need, combine to suggest that optimal performance

at this task is impossible to define, let alone achieve. Furthermore, the definition above is

descriptive rather than prescriptive, and thus provides no assistance in building an imple-

mentation. In order to ground retrieval in a more concrete task, most information retrieval

research focuses on identifying documents with a high degree of relevance. By presenting the

user with a set of relevant documents, it is hoped that they can satisfy their information need

quickly by perusing these documents. While this is a simplification and abstraction of the

base task of helping the user satisfy their information need expeditiously, it is hypothesised

that the effectiveness with which a system retrieves relevant documents is highly correlated

to the degree to which it helps the user meet their information need.
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With the model described, one must answer the question: what does it mean for a docu-

ment to be relevant? Despite seeming reasonably intuitive, relevance has proved particularly

elusive to define. Mizzaro (1997) lists over 130 papers whose primary focus is the issue of

relevance. Saracevic (1975) discussed the difficulties in defining relevance over three decades

ago. An entire special issue of JASIST was devoted to relevance (Froehlich, 1994), one of its

themes being an “inability to define relevance.” Mizzaro (1998) attempts a four-dimensional

taxonomy that enumerates dozens of different notions of relevance. Despite the vigorous

discussion and debate, we are seemingly no closer to consensus on the issue, nor do we have

a clear understanding of the relationship between the different notions of relevance, and the

overarching goal of satisfying an information need.

Despite being less favoured by those researchers who have studied relevance in depth,

system-oriented relevance remains the most commonly used formulation of relevance for

practitioners in information retrieval. System-oriented relevance is perhaps the most ab-

stract form of relevance, because neither the user nor their information need is explicitly

modeled under this approach. System-oriented relevance is a matter exclusively between a

document, D, and a query Q. D is relevant to Q if “there is substantial semantic over-

lap between the representations of D and Q”(Lavrenko, 2004, p. 4). The simplicity of this

definition is particularly advantageous when evaluating the relative performance of various

information retrieval systems. For more information on how system-oriented relevance is

used for evaluation, see Section 2.3.5.

An assumption that is often made with regards to the system-oriented definition of rele-

vance is that it is binary : either a document is relevant, or it is not. Under this assumption,

there is no scope to say that one document is more relevant than another. Using a binary

definition of relevance greatly simplifies the process of effectiveness evaluation. Further-

more, studies on graded relevance — in which judges are asked to give a score based on the

degree of relevance a document has — have shown that there is little agreement between

different judges on the relevance grade, whereas the agreement is far greater if relevance is

binarised (Lavrenko, 2004, p. 6).

Because system-oriented relevance disposes of any reference to the complex and somewhat

transcendental relationship between the user and their information need, instead focusing on

the binary relation between a concrete document and a concrete query, it makes the task

of information retrieval research significantly simpler. However, the degree to which the

notion of relevance has been abstracted away from the user brings into question whether this

simplified definition is meaningful in the context of the information retrieval task.
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2.3.3 Ranked search

The recognition that a system for guiding a user towards relevant documents must explicitly

deal with inherent uncertainties is generally credited to Maron and Kuhns (1960). Their

probabilistic indexing system for concept-based indexing introduced fuzziness into the index,

with each document given a number between zero and one for a particular concept based on

the probability that the document will be relevant to a user interested in that concept. The

result of a search in this system is a list of documents in decreasing order of probability of

relevance to the user, based on the probabilities stored in the index.

The notion that returning documents in decreasing order of probability of relevance is

an optimal arrangement is known as the probability ranking principle. Robertson (1997)

most famously reproduces a formulation of the probability ranking principle as due to W.S.

Cooper:

“If a reference retrieval system’s response to each request is a ranking of the

documents in the collections in order of decreasing probability of usefulness to

the user who submitted the request, where the probabilities are estimated as

accurately as possible on the basis of whatever data has been made available to

the system for this purpose, then the overall effectiveness of the system to its

users will be the best that is obtainable on the basis of that data.”

The probability ranking principle underlies the search mechanism of most current infor-

mation retrieval systems: documents are each assigned a score with relation to the query,

and they are presented as a list in order of decreasing score.

When Maron and Kuhns proposed probabilistic indexing, the notion of probability of

relevance was explicitly coded into the index. Modern retrieval systems use rich models and

functions to produce scores by which documents are ranked; however, it is often unclear

whether these scores can be legitimately interpreted as probabilities of relevance. For exam-

ple, the commonly-used cosine score is based on an underlying measure of distance between

a document and the query; it is not a probability at all. The query-likelihood score (Ponte

and Croft, 1998) does produce a probability, but it is a generative probability based on a

language model rather than a probability of relevance. In such cases it is difficult to see how

the probability ranking principle is applicable.
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2.3.4 Ranking models and the TF×IDF principle

The probability ranking principle provides a descriptive framework on which search systems

are based. However, it provides no clue as to how the goal of ranking documents in de-

creasing order of probability of relevance might be achieved. This task is left to a ranking

formula based on one of several ranking models, theoretical systems that attempt to model

the relationship between a query and a document and thus, whether directly or indirectly,

the probability that a document is relevant to a particular query.

Whichever model is used, a fundamental principle of document ranking is the TF×IDF

term-weighting principle. This principle states that the contribution of a term to the relevance

score for a document should be in some way proportional to the document’s term frequency

fd,t (TF) and inversely proportional to the number of documents in the collection in which

it appears, the so-called document frequency ft (IDF).

The first part of the formulation — TF — articulates the intuition that the more fre-

quently a term occurs in a document, the more significant an indicator it is of the topic of the

document. The second part — IDF — gives greater weight to terms that appear rarely across

the collection and downgrades the significance of terms that appear frequently. This can be

justified in a number of ways, such as by asserting that rare terms provide greater discrimi-

nating power between relevant and nonrelevant documents, or that rare terms are more likely

to be signifiers of topic than common terms, which often play functional rather than topical

roles within natural language. Croft and Harper (1997) also show that IDF emerges as a

term-weighting parameter within the probabilstic modeling framework (see Section 2.3.4) in

situations where no relevance information is known.

Witten et al. (1999) argue that the traditional TF×IDF formulation is overly strong, and

propose a weaker set of ‘monotonicity constraints’ in the same spirit:

“A term that appears in many documents should not be regarded as being more

important than a term that appears in a few, and a document with many occur-

rences of a term should not be regarded as being less important than a document

that has just a few.”

We now briefly describe the three most commonly-used ranking models: the vector-space

model, probabilistic modelling, and language modelling.
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Vector-space model

The vector-space model treats each query and document as a single vector in natural-language

space. In order to estimate the probability of relevance of a document to a query, the

‘closeness’ of the vector representing the document and the vector representing the query is

computed using one of a range of standard scalar measures for vectors.

In practice, queries and documents under the vector-space model are |V |-dimensional

vectors, where V is the collection vocabulary, the set of all terms in use in the collection.

Each dimension corresponds to a particular term in the vocabulary, and the size of the vector

for a document d in a dimension t is determined by the term weight wd,t. As discussed above,

a term’s weight is most often a product of its TF and IDF.

An appealing candidate for quantifying the similarity of the document and query vectors

is the dot product, or inner product:

dp(q, d) =
∑

t∈V

wq,t · wd,t (2.1)

Because the dot product can be geometrically interpreted as being the product of the

length of one vector and the length of the projection of the other vector, it emphasizes

similarity in vector direction. The more aligned a pair of vectors, the greater their potential

for a large dot product.

The dot product metric is capable of producing adequate results in practice when used

for information retrieval. However, it is biased; because the dot product is the product of

vector lengths, it will — all other things being equal — be higher for vectors of a greater

magnitude. Thus, the dot product metric tends to favour longer documents at the expense

of shorter relevant documents.

The tendency of the dot product metric to favour long documents can be corrected by

the application of an appropriate document-length normalisation factor. However, this has

no theoretical basis. Hence, we use the cosine distance measure, which allows for document

length to be normalised in a principled manner. The cosine distance measures the cosine of

the angle θ between the query vector and the document vector. Because the cos(0◦) = 1 and

cos(90◦) = 0, the cosine measure is maximised when the vectors are parallel and minimised

when they are orthogonal. Thus, cosine is a measure of the degree to which the query and

document vectors point in the same direction. The general formula for the cosine distance

between a query q and a document d is as follows:
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cosine(q, d) =

∑

t∈V wq,t · wd,t

Wq ·Wd
(2.2)

where Wd and Wq are the document weight and query weight respectively, defined as the

Euclidean distance of the respective vectors from the origin.

Because the cosine distance measures the angle between vectors, it is insensitive to their

length. The functional interpretation is that the value Wd acts to normalise for document

length. Thus, it does not suffer from the problems faced by the other vector-space metrics

with regards to document-length bias.2 In the body of published empirical evaluations over

the years (in particular TREC; see Section 2.4) the cosine measure is generally shown to

be reasonably effective, although somewhat inferior to leading metrics from the probabilistic

modelling and language modelling paradigms.

Probabilistic modelling

Probabilistic modelling (Robertson and Sparck Jones, 1976) is an attempt to apply the

probability ranking principle directly to the scoring process. Thus, the probabilistic modelling

framework tries to estimate P (r|d), the probability that a particular document is relevant to

the user’s information need.

The original similarity measure based on the probabilistic modelling approach required

that one be in possession of a reasonable estimate of the number of relevant documents, and of

the term distribution amongst the set of relevant documents (Robertson and Sparck Jones,

1976). In the absence of this knowledge, the model reverts to a rather simple IDF-based

approach. Since then, the similarity metric has been enhanced by the addition of factors for

term weighting, document length normalisation, and query-term weighting. Thus, probabilis-

tic modelling remains of interest for pragmatic reasons: several similarity measures issuing

from the probabilistic modelling framework show competitive effectiveness when compared to

other state-of-the-art measures. In particular, the Okapi BM25 similarity measure (Robert-

son et al., 1995) is considered amongst the most effective of state-of-the-art similarity mea-

sures. The BM25 measure scores documents using the following formula:

2Singhal et al. (1996) contend that the normalisation introduced by standard cosine distance in fact pe-

nalises longer documents. The pivoted document-length normalisation measure is thus introduced to normalise

for length in a more unbiased manner.
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S(d, q) =
∑

t∈q



log

(

N − ft + 0.5

ft + 0.5

)

×
(k1 + 1)fd,t

k1

(

(1− b) + b · |d|N
P

i∈N
|di|

)

+ fd,t

×
(k3 + 1)fq,t

k3 + fq,t





(2.3)

The three factors in the equation can be summarised as weighting each term according to

its frequency in the collection (the IDF factor), according to its frequency in the document

(the TF factor), and according to its frequency in the query (pertinent to situations where

the query is lengthy). As well as using collection size N , term frequency ft, document term

frequency fd,t, and query term frequency fq,t, BM25 contains the parameters k1, b, and k3.

These can be adjusted or tuned to suit the characteristics of the collections being searched,

though ranges of recommended values have been published (Sparck Jones et al., 2000).

Ranking formulae such as Okapi BM25 bear little superficial resemblance to the original

principles of probabilistic modelling. Nonetheless, BM25 consistently demonstrates excellent

performance in practice, and for this reason the probabilistic modelling approach is still in

widespread use.

Language modelling

Language models are generative statistical models that are designed to simulate the process

by which natural-language text is created. These models can have various degrees of sophisti-

cation and fidelity, depending on the application and the data available. Language modelling

has seen longstanding use in diverse areas including speech recognition (Bahl et al., 1990)

and automated translation (Brown et al., 1990). Its introduction into the field of informa-

tion retrieval can be traced to Wong and Yao (1989), though it was popularised and brought

to its current form by Ponte and Croft (1998), with the introduction of the query likelihood

approach to document ranking.

Language models define a probability distribution for the next term to appear in a stream

given all the terms that came before it:

P (tn|t1 · · · tn−1) (2.4)

There are no restrictions on the way in which a general language model may be formulated. In

information retrieval, the models tend to be simple unigram models in which no consideration

is given to the preceding text in estimating generation probabilities:
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P (tn|t1 · · · tn−1) = P (tn) (2.5)

The generative probability of a particular document D under a unigram model is simply

P (D) =
∏

t∈D

P (t) (2.6)

The main reason, besides simplicity, that unigram models are favoured over more complex

and realistic language models is the issue of data sparsity in model prediction. The more

complex the model, the larger the sample required to accurately parameterise it. As we are

often dealing with relatively small samples in information retrieval it is not feasible to work

with higher-order models.

To estimate the model used to generate a document D, the language modelling approach

treats the document as a sequence of samples from the model. These samples can then

be used to calculate the document’s maximum likelihood estimator — the distribution that

yields the highest P (D) of any possible distribution. In the case of unigram models the

maximum likelihood distribution is built by dividing the probability mass evenly amongst

all the terms in the document:

P (t|d) =
fd,t

|d|
(2.7)

The query likelihood measure starts with the conjecture that the likelihood of a document

being relevant to the query is correlated to P (d|q), the generative probability of the document

given the language model used for generating the query. That is, if a document is likely to

be generated by the model the user was using to create the query, it is likely to be topically

aligned with, and thus relevant to, the query.

In a typical keyword search, the query may only be two or three terms in length. We

are thus faced with an extreme data sparsity problem; after all, a language model induced

over a two-word query will be wildly inaccurate. This problem is addressed by using Bayes’s

theorem to calculate the value indirectly, as follows:

P (d|q) =
P (q|d)P (d)

P (q)
(2.8)

Because P (q) remains constant for any given query, it can be removed from consideration:

P (d|q) ∝ P (q|d)P (d) (2.9)
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P (q|d), the generative probability of the query from the language model used to generate

the document, is the query likelihood. If P (d), the document prior, is assumed to be uniform

then we have

P (d|q) ∝ P (q|d) (2.10)

If we assume a uniform prior, we have P (q|d) being a constant factor of P (d|q). This means

that ordering documents by P (q|d) will produce the same ranking as if they were ordered

by P (d|q). In the practical setting this is of enormous benefit as in general we have a much

larger sample from which to predict the language model of a document than that of a query.

Although using the language model induced from a document greatly alleviates the data

sparsity problem faced when trying to estimate P (d|q) directly, the problem does still exist.

A document (particularly if it is short) remains a relatively small sample from which to

estimate the entire language model. This results in a ‘jagged’ distribution in which the entire

probability mass is concentrated on those terms that happened to appear in the sample. A

maximum-likelihood distribution asserts that only those terms that have occurred are in fact

possible. This is implausible in the case of documents; just because a word has not occurred

in a document doesn’t mean it couldn’t have occurred.

From a practical perspective, the maximum-likelihood distribution results in undesirable

behaviour if one of the query terms does not occur in the document. As shown in Equa-

tion 2.6, the generative probability of a query is calculated as a product of the individual

probabilities for each term. Thus, if a query term t does not occur in a document, a zero is

introduced into the product and P (q|d) goes to zero, even if many of the other query terms

occur frequently in the document.

In order to deal with the consequences of data sparsity, the maximum-likelihood distri-

bution is generally smoothed. Smoothing is a general term for techniques in which some of

the probability mass is redistributed away from the jagged probability peaks of a distribu-

tion in order to compensate for an inadequate sample size. The most effective smoothing

techniques are those that take advantage of the fact that there is further knowledge about

the document model as well as the sample represented by the document itself. While it is

possible to directly incorporate knowledge about natural language into the model, an easier

and more robust technique is to treat the entire document collection as a larger sample of

a more generalised language model, known as the background model. While the background

model does not capture topicality in the way that a model induced over just the document
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does, it contains far more data about the way in which the language is used.

The Jelinek-Mercer smoothing technique (Zhai and Lafferty, 2004) builds a simple mixture

model, linearly combining the document and background models using a parameter λ.

P (w|d) = (1− λ)P̂ (w|d) + λP̂ (w|c) (2.11)

where P̂ (·|d) and P̂ (·|c) are the maximum-likelihood document and background models re-

spectively. In this way, all words appearing anywhere in the collection have a nonzero gener-

ation probability within the document model.3 While Jelinek-Mercer smoothing is a simple

and effective baseline smoothing technique, it is outperformed by some more sophisticated

smoothing techniques, notably Dirichlet smoothing (Zhai and Lafferty, 2004). Research is

this area is ongoing.

Query likelihood is the original and most commonly used ranking model within the lan-

guage modelling paradigm, but there are other choices. These include translation mod-

els (Berger and Lafferty, 1999) and relevance models (Lavrenko, 2004).

2.3.5 Effectiveness evaluation for ranked search

In building systems that attempt to quantify the degree of relevance a document has to a

query, we encounter what is known as the semantic gap. This principle is an acknowledg-

ment that the task of moving from purely symbolic expressions to semantic notions — for

example, from the text of a document to its meaning — is far beyond the current state of the

art in computer science. Thus, we cannot hope to accurately capture the proper relationship

between an information need and relevant content — both semantic notions — given only

textual representations of query and documents. In fact, the problem is even more funda-

mental: a system performing a ranked search task is acting on incomplete information. The

issue is not just that a query is a textual representation of a semantic concept, but that

it is an incomplete representation of that concept. Even a meticulous human expert could

not hope to retrieve the set of documents that best meets a user’s information need, for the

simple reason that the information need is not fully specified.

Under such circumstances, it is unrealistic to expect that an algorithm or system will

return the precise set of documents that are considered relevant to the user. It thus becomes

3Mixture-model smoothing also implicitly introduces an IDF factor into the query likelihood ranking

process. Because the background model will contain higher generation probabilities for commonly occurring

words than for rarely occurring words, a document lacking a rare query term will be penalised more heavily

in the ranking process than a document lacking a more common query term.
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pertinent to evaluate not just the efficiency, but also the effectiveness of a system. That is,

we must quantify the degree to which a system has succeeded in its task of retrieving relevant

documents.

A vast range of evaluation metrics and methodologies have been proposed. Broadly,

evaluation is conducted either in a user-oriented or a system-oriented fashion. In the former,

an attempt is made to directly measure the level of satisfaction of real users on different

systems. In system-oriented evaluation, the evaluation is directly on the system output

using some model of user behaviour. User-oriented evaluation has been marginalised to some

degree by the fact that meaningful experiments can be expensive to conduct, while system-

oriented evaluation is accused of being too abstract to be meaningful (Saracevic, 1995).

Nonetheless, system-oriented evaluation represents the most widespread form of information

retrieval evaluation. Within this context, the dominant methodology for several decades has

been based on the Cranfield paradigm (Cleverdon, 1991; Voorhees and Buckley, 2002).4

The Cranfield paradigm specifies a comprehensive methodology for the system-oriented

evaluation of the effectiveness of an information retrieval system. Under the Cranfield

Paradigm, a static corpus of documents of an appropriate type is specified, as well as a

set of queries. For each query, the documents in the test collection are manually judged for

relevance to that query. Taken together, the corpus, queries, and relevance judgements form

a test collection. A search system is then evaluated using the confliting metrics of recall and

precision. Given a set of documents returned in response to a certain query, the recall is the

proportion of all documents relevant to the query that appear in that set. Precision is the

proportion of documents appearing in the set that are relevant to the query.

The conflict between the two measures becomes apparent when one considers the proba-

bility ranking principle. As one descends the result list, the confidence that each subsequent

document is relevant decreases; thus, one expects that (on average) precision is maximised

by returning only the single document with the highest probability of being relevant as de-

termined by the search engine. Conversely, recall increases monotonically as the size of the

result list is expanded; after all, adding extra documents can never lead to a reduction in the

number of relevant documents in the list.

Recall and precision operate on the assumption that a fixed-size set of results has been

returned by the search engine. Furthermore, they do not take account of the ordering of

results in the ranked list. In general, these are neither necessary nor desirable assumptions

4Though details have changed over the years, primarily to accommodate larger corpora, the vast majority

of modern system-oriented evaluation methodologies can trace their lineage back to the Cranfield paradigm.
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in the domain of ranked search. The task of a ranked search system is to impose an ordering

on the document collection in accordance with the probability ranking principle. A user may

choose to browse as far down the ordered list as they wish until the entire collection has been

inspected. It is not for the system to decide a threshold below which no more documents need

be returned. While recall and precision are fundamental principles of information retrieval,

they are not in and of themselves good measures of performance for a ranked search system.

One way of removing the artificial need for a fixed-size result set is to graph both recall

and precision against the number of documents retrieved. Thus, the overall performance of

the system can be observed as one goes further down the list. The dichotomy between recall

and precision discussed above, in which one is expected to decrease as the other increases,

suggests a simpler alternative presentation of the same data: plotting precision as a function

of recall.

Recall-precision curves provide a wealth of data about the effectiveness of a system in

producing ranked lists. However, they suffer from a major weakness: they do not represent,

in the general case, an ordering on the quality of ranked lists: “there is no absolute sense in

which one can say that one particular pair of precision-recall values is better or worse than

some other pair” (van Rijsbergen, 1979, page 129). Inasmuch as a major aim of effectiveness

evaluation is to be able to discriminate between two retrieval strategies, to be able to say

‘A is better than B’, it is useful to be able to reduce the effectiveness of systems to a single

figure. In this way, it is possible to impose an ordering on the effectiveness of a range of

systems, making for much easier interpretation of results. We now present a summary of

some of the more common measures for ranked lists; all but one are based directly on recall

and precision.

Precision at n Often denoted as P@n, one simple expedient is to nominate an arbitrary

cutoff in the ranked list at which precision is measured, and for that value to be the represen-

tative score for a ranked list. For example, P@10 is the proportion of the first 10 documents

in the ranked list that are relevant to the query. Recall is not explicitly measured in P@n,

but the observation holds that a higher value also represents a higher level of recall.

F1 measure The F measure was proposed by van Rijsbergen (1979) as a way of combining

a recall-precision pair into a single value. The most commonly-used form of the F measure

is the F1 measure, which is a simple harmonic mean of the recall and precision values:
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F1 =
2rp

r + p

The F1 measure is provides a theoretically motivated, unbiased way of combining recall and

precision into a single value. However, the reduction in dimensionality renders interpretation

of F1 difficult; a single F1 value forms a contour line across the space of recall–precision

values: it is thus impossible to determine whether a system producing a given F1 value has a

high recall with low precision, or vice versa. Similar criticisms apply to many of the summary

measures that follow.

n-point average interpolated precision One way of representing a recall-precision curve

as a single point is to take the area under the curve, which can be estimated by sampling the

curve at intervals and taking a mean of the precision values observed. The most common

variant of this measure is 11-point average interpolated precision. In this variant, precision

values are sampled at recall values of 0%, 10% and so on in intervals of 10% up to 100%

recall. The average of these values is then the representative value for a particular run.

Interpolation of precision simply means that the precision value at a given point is the

greater of the actual value at that point and all values for higher levels of recall. This practice

removes noisy jitter and enforces monotonicity on the recall-precision curve.

Average precision Non-interpolated average precision (Buckley and Voorhees, 2000), gen-

erally referred to as average precision or AP, is the official metric of many of the tracks in

TREC (see Section 2.4), and is consequently one of the most popular metrics in use today.

The average precision of a ranked list is calculated by summing the precision of the list at

each relevant document and dividing by R, the total number of known relevant documents

for the query. When average precision is used to score multiple runs and the average score

taken, this is usually known as mean average precision or MAP.

A criticism that is made of AP is that, while it exhibits powerful discriminating charac-

teristics, it presents no clear user model (Buckley and Voorhees, 2004). It has thus far been

impossible to describe a sensible model of user behaviour for which the measure of result list

quality would resemble average precision. Another criticism is that AP is unstable in the

presence of incomplete relevance judgements; given the insertion of additional judgements

into the pool, the AP of a run could either increase or decrease in an unbounded fashion.
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R-Precision This measure takes the precision at R, where R is the total number of relevant

documents for the query in the judged set. R-precision is also know as P@R. Aslam and

Yilmaz (2005) provide an analysis of R-precision explaining and supporting the commonly

observed correlation between R-precision and AP.

Reciprocal Rank The reciprocal rank of a result list takes on the value 1
n where n is

the rank of the first relevant document in the list. When reciprocal rank is used to score a

number of runs and the average score taken, this is usually known as mean reciprocal rank

or MRR.

bpref Due to the vast size of modern document collections, evaluation takes place on sets

of judgements that are unavoidably incomplete. Thus, the issue of the robustness of an

evaluation metric — the degree to which it degrades in accuracy as relevance judgements

become less complete — becomes pertinent. Buckley and Voorhees (2004) define a new

measure, bpref (for binary preference), that is claimed to be more robust under incomplete

judgements. bpref is calculated by determining the proportion of judged nonrelevant docu-

ments that appear before each judged relevant document in a result list, and averaging these

values. Buckley and Voorhees perform a number of experiments demonstrating the superior

robustness of bpref, though the experiments are artificial and it is uncertain how applicable

the results are to more realistic situations.

2.4 TREC

TREC, the Text REtrieval Conference5 (Harman, 1993; 1995) has run annually since 1992

and is coordinated by the United States National Institute of Standards and Technology

(NIST). Intended as a forum at which IR researchers could compare the approaches and

effectiveness of their search software, the contribution of TREC, as well as the conferences

themselves, has been an ever-growing archive of freely-available collections, query sets and

their corresponding relevance judgements. This archive has provided the IR community with

a common testbed for the comparison and evaluation of retrieval systems, and it is used far

more broadly that merely in the context of the conference itself. In this thesis, we use data

from the TREC initiative for the evaluation of a number of phenomena.

TREC is organised into various tracks, subareas that emphasise different information

5http://trec.nist.gov
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retrieval tasks, or different aspects of those tasks. In this section, we provide brief descriptions

of those tracks most directly related to our work.

2.4.1 TREC ad hoc search tracks

The ad hoc retrieval task comprises what is most often thought of as the search task: returning

a ranked, document-oriented response to queries that are formulated on an ad hoc basis.

Over the duration of the TREC initiative, there have been several tracks that have focused

on various aspects of the ad hoc search task.

Ad hoc track The TREC ad hoc track ran from 1992 to 1999 and focused on the ad hoc

search task on various collections of data sourced from news agencies such as Associated Press

(AP) and the Los Angeles Times. The task was to return a ranked list of documents for each

of 50 topics representing various specific information needs. Each topic consisted of a brief

title, a description of the characteristics of a relevant document, and a more detailed narrative

describing in precise details the nature of the information need. Submitted runs were then

evaluated using various recall–precision based metrics. For a more detailed description of the

task mechanics, see Harman (1993) or Harman (1995).

The ad hoc track focused generically on the ad hoc search task. As it became clear that

various aspects of the task required specific attention, other ad hoc search tracks have been

integrated into the TREC program. These tracks are described below; in general, they follow

the same methodology as the ad hoc track.

Web track The web track (Craswell and Hawking, 2002) has been running since 1999 and

is designed to evaluate the performance of ad hoc search systems over data drawn from the

web. Web data has characteristics that make it significantly different to the collections of

newswire data used for the ad hoc track. The fact that most web documents are created in

the hypertextual, semi-structured HTML format provides rich possibilities for new ranking

methodologies. The hypertextual nature of HTML data allows for link analysis (Kleinberg,

1999), which has proved successful as an ingredient in the ranking mix (Brin and Page, 1998;

Craswell et al., 2001). The semi-structured nature of the data allows for novel weighting

schemes, such as according terms in the page title greater weight, or giving those terms that

appear in a large font greater weight than those appearing in a smaller font.

A collection of web data, WT100G (for Web Track 100 Gigabytes) and two subsets,

WT10G and WT2G, were created for the Web track. The ad hoc task — as well as several
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other web-oriented IR tasks — was evaluated over this data, with systems encouraged to

take advantage of web-specific optimisations. In 2005, the web track was merged into the

terabyte track (see below).

Terabyte track The massive volume of data present on the world-wide web and in many

government and corporate document repositories present serious challenges to search engine

creators. Search techniques that work for small document collections may not scale well to

large collections, both in terms of efficiency and effectiveness. The terabyte track (Clarke

et al., 2004) is an ad hoc web track designed to evaluate search in the context of large terabyte-

level collections. One of the legacies of the terabyte track is the GOV2 collection, a crawl of

the .gov (U.S. Government) domain. While the aim had been to amass one terabyte of data,

this was not achieved. Nonetheless, the GOV2 collection — at 426 GB and containing over

25 million documents — is significantly larger than any other collections openly available to

research institutions.

Robust track At the various ad hoc tracks it has been observed that some queries are

much harder than others, in the sense that many search systems catastrophically fail to

find many (or any) relevant documents for such queries, often despite good performance on

many other queries in the query set. From a user perspective, this is seen as particularly

undesirable. It is hypothesised that a catastrophic failure in response to one query is not

adequately compensated for by excellent performance on another. It is therefore important

that a search system demonstrate the property of robustness. The focus of the TREC Robust

track (Voorhees, 2005) is on improving the robustness of information retrieval systems.

The Robust track uses a standard ad hoc methodology, simply choosing some of the

worse-performing topics from the ad hoc track. Thus, rather than optimising search systems

to perform well on average across a range of queries, it became necessary in the Robust

track to focus on points of failure. In the 2005 Robust track a new official evaluation metric,

gMAP — for geometric MAP — was introduced. This metric was considered to be more

suitable given the track emphasis, as taking the geometric mean of the AP rather than the

standard arithmetic mean leads to a greater penalty for inconsistent performance. Thus,

gMAP encourages participants to focus on the worst-case performance of their systems.
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Pooled judgement

All the ad hoc tracks are evaluated using various of the recall–precision measures described in

Section 2.3.5, and thus require a set of relevance judgements against the collection. That is,

they must know which documents in the collection are relevant with respect to a particular

query, and which are not. In general, the only way to reliably extract a set of relevance

judgements for a query is for a human judge to go exhaustively through the target collection

and make a determination for each document of whether it is in fact relevant to the query

in question.

Exhaustive judgements were possible (though expensive) on the smaller collections used

in earlier evaluation efforts such as those at Cranfield (Cleverdon, 1991). However, modern

collections are enormous. The TREC GOV2 collection contains over 25 million documents.

It is simply not feasible for a group of human judges to accurately evaluate this vast number

of documents.

The solution used in TREC is pooling (Sparck Jones and van Rijsbergen, 1975). Rather

than judging all the documents in the collection, the top n documents for each submitted run

are added to a judgement pool; in TREC n is typically 100. Only those documents appearing

in a judgement pool are manually inspected; all other documents are typically assumed to be

irrelevant (although this is not the case for the bref measure). By pooling documents from

a variety of search methodologies, it is hoped that not only will it be possible to calculate

accurate effectiveness scores for the submitted runs, but to reuse the incomplete evaluations

on other runs that were not part of the pooling process, without distorting relative effec-

tiveness assessment (Voorhees and Buckley, 2002). Sanderson and Zobel (2005) found that,

while many relevant documents had most probably not been judged, the collections did seem

to demonstrate robust reusability. Further efforts have been made at finding measures that

are robust in the face of pool incompleteness (Buckley and Voorhees, 2004) and modifying

the pooling procedure in order to get better coverage of relevant documents (Zobel, 1998;

Cormack et al., 1998).

2.4.2 TREC novelty track

In the general ad hoc search tracks, the notion of relevance adhered to the simplified definition

given in Section 2.3.2. In particular, relevance is assumed to be a relation solely between a

document and a query. Inasmuch as relevance is supposed to reflect utility in some sense,

this is not a very realistic limitation: the relevance of a document to a user is a function not
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just of the document itself but of the state of the user. If an item of information is already

known to the user — that is, the information is not novel — it loses a great deal of value.

While it is unfair to expect a search system to be able to know or predict the state of a

user’s knowledge external to their interaction with the search system, it is more reasonable

to attempt to keep track of how the stream of results alters the state of the user’s knowledge.

In particular, it is reasonable to attempt to keep track of what information has already

been imparted to the user so that redundant information is not repeated. The task of a

search system is thus extended from differentiating between relevant and non-relevant (in

the traditional sense) documents to additionally differentiating between novel and redundant

information. This model was first explicitly expressed by Zhang et al. (2002).

The TREC novelty track (Harman, 2002; Soboroff and Harman, 2003; Soboroff, 2004)

ran from 2002 to 2004 with the aim of promoting techniques that return a stream of relevant

and novel information to the user. Though the task varied slightly over the three years it

was run, the loose outline is this: given an ordered stream of sentences, return a sentence

only if it is both relevant and novel.

In order to evaluate the performance of systems at the novelty task, topics were chosen

from previous ad hoc tasks. For each of these topics, 25 documents from the relevant set were

selected, ordered, and segmented into sentences. Judges were required to first traverse the

list of sentences and mark those that they considered relevant to the topic. They then had

to look through the set of relevant sentences they had selected and mark them as novel or

redundant with respect to the sentences that had preceded them. The recall and precision of

runs relative to the judged set of relevant novel sentences was evaluated. To allow a sensible

averaging of results across the different topics, the F1 measure (van Rijsbergen, 1979) was

used as the evaluation measure.

In later years, the track was divided into several subtracks, allowing participants to focus

exclusively on finding novel sentences as well as the full novelty task, and providing varying

amounts of training data.

The results from the novelty track were not overwhelmingly strong. The formulation of

the task has been criticised as providing meaningless or misleading results. For example, in

order to get a sufficient volume of novel relevant sentences, the judgement sets consisted of

sentences solely extracted from judged relevant documents. Allan et al. (2003) found that

this bias in building test collections leads to a massive overestimate of the effectiveness of

novelty-detection systems. More disturbingly, they found that relative effectiveness orderings

were not preserved; in fact, systems that performed better when only relevant documents
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contributed to the judgement set tended to do worse when a mix of relevant and nonrelevant

documents were used. This calls into question the degree to which the results of the novelty

track can be interpreted to be indicative of real-world performance.

2.5 Distributed search

The information retrieval process as we have described it thus far adheres to a single-database

model. It is assumed that the documents being searched are aggregated into a single collection

that can be indexed and searched as a monolithic system. By allowing the information re-

trieval system to have full access to the data being searched, the single-database model makes

the information retrieval task simpler and more accurate. However, there are circumstances

in which this model is inappropriate or impossible: when data is physically dispersed and

bandwidth is limited, or when content owners only make documents available via a search

interface for copyright, operational, or privacy reasons. When wishing to search amongst

such documents, it becomes desirable or necessary to use the multi-database model that is

the basis of distributed information retrieval (Callan, 2000).

In the multi-database model of information retrieval, there is no central aggregated col-

lection: rather, the documents composing the ‘collection’ are distributed amongst a number

of servers, each of which presents a standard search interface. The user transacts with a sys-

tem known as a broker, which is responsible for dispersing the query and aggregating results

into a standard ranked list. The distributed information retrieval environment is usually

characterised as being either cooperative, in which servers provide the broker with useful

information such as collection statistics, or uncooperative, in which the servers only make

available the bare search results. In either case, the broker must perform two main tasks in

order to effectively help the user meet their information need: resource selection and result

merging.

In distributed information retrieval it is assumed that it is not in general desirable or

possible to query all databases on the network. Thus, when a query is presented to the

broker, it must select a subset of the available databases to which to forward the query (Si

and Callan, 2003a; 2004). The aim is to select the servers that are most likely to return

relevant documents in response to the query. In order to make a decision on which servers

to select, resource selection techniques make use of a representation set for each server. A

representation set is a data structure describing the contents of the collection maintained

by the server, typically detailing standard collection statistics. In a cooperative context,
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servers make their representation sets available directly to the broker. In an uncooperative

setting, the broker must use query-based sampling techniques to estimate the representation

set (Callan and Connell, 2001).

In response to the issuing of a query to the selected servers, the broker will receive a

series of ranked lists. The results merging task consists of interpolating these lists in such

a way as to maximise utility in accordance with the probability ranking principle. In a

cooperative setting in which ranking scores are provided to the broker and representation

sets are available, various techniques exist to normalise these scores to effect the merger of

lists (Callan et al., 1995; Craswell et al., 1999). In the absence of such data, result merging

must proceed based on the rankings assigned by the individual systems, in combination with

sample data that has been collected by the broker (Si and Callan, 2003b).

2.6 Index structures for fast text querying

Searching for short strings within a large volume of text is a fundamental operation within

computer science, and is particularly important for information retrieval. For a query string

of length m and a collection of size n, the näıve approach to this task is to compare the query

string against every substring of length m in the collection. Such an approach would take

O(mn) operations. Various more sophisticated methods for scanning the collection text can

reduce the average-case complexity to O(n).

Nonetheless, for large n, linear scanning of the collection text — even with the more

refined O(n) algorithms — is extremely slow. If a collection is 100 GB in size, any linear

search algorithm must read the entire collection in from disk. This is not acceptable for a

high-performance search system.

In this section, we discuss two index structures — suffix structures and inverted indexes

— that reduce search for short substrings to speeds that are sublinear in n.

2.6.1 Suffix trees and suffix arrays

Suffix trees and suffix arrays (known, together with their variants, as suffix structures) are

a class of index structures that allow quick access to all suffixes of a string (Gusfield, 1997).

Suffix structures allow fast solutions to a wide variety common problems in string processing,

such as string matching, the longest repeated substring problem, and the longest common

substring problem.

A suffix tree for a string is in fact a trie constructed from every suffix in that string.
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Figure 2.3: An example suffix tree for the word ‘alfalfa’. The $ character represents the

end of string, and the number in the leaf node represents the starting position of the suffix

represented by that node.

Figure 2.3 shows the suffix tree constructed from the string alfalfa. Each vertex of the trie is

labeled; concatenating the labels of each vertex traversed in a root-to leaf traversal produces

a suffix of the string. The offset of that suffix into the string being indexed is labeled at the

leaf. For example, in Figure 2.3, traversing from the root along the middle branch and then

taking the right-hand branch produces the string lfalfa and terminates at a leaf node labeled

with the offset 2. This indicates that the suffix lfalfa begins at an offset of 2 in the original

string alfalfa.

In addition to many other uses, suffix trees are capable of returning offsets to all occur-

rences of an arbitrary query string in a time proportional to the length of the query. This

can be effected by traversing along the query string from the root. If the traversal cannot be

completed, the query string does not have a match; otherwise, the leaf nodes of the subtree of

the node at which the traversal terminates contain pointers to the occurrences of the query.

This index-lookup task is fundamental in information retrieval.

Another problem that can be efficiently solved by suffix trees is that of finding repeated

strings of a certain length. The tree must be traversed in order to gather the subtrees that

occur at a depth equal to the length being searched. Leaf-nodes occurring on the same

subtree will point to repeated strings of at least the specified length.

Suffix trees are extremely powerful and flexible. However, in the form described, they

are in-memory structures that consume an amount of memory that is significantly greater

than the size of the text being indexed: for a string of size n, Manber and Myers (1993)

report space usage of at least 16.6n for real data samples. After thorough optimisation,

Kurtz (1999) managed to reduce this to an average-case of 10.1n. This is still an onerous
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a[0] 7 (a)

a[1] 4 (alfa)

a[2] 1 (alfalfa)

a[3] 6 (fa)

a[4] 3 (falfa)

a[5] 5 (lfa)

a[6] 2 (lfalfa)

Figure 2.4: An example suffix array for the word ‘alfalfa’. Sequentially accessing the array

returns the position of suffixes in lexicographic order.

overhead, and limits the utility of suffix trees for larger amounts of data.

Suffix arrays are alternative structures that can be used instead of suffix trees for many

applications — including those described above — but consumes less memory for a string of

a given size (Manber and Myers, 1993). A suffix array consists of an array of pointers into

the string being indexed. The pointers are arranged in such a way that a linear traversal of

the suffix array will encounter the suffixes in lexicographic order. A suffix array for the string

alfalfa is presented in Figure 2.4. The sorted order of the array means that all occurrences

of a given substring will appear adjacently, and can be located using a binary search.

In its standard form, a suffix array consumes 5n space in the size of the source, a significant

improvement over suffix trees. Further developments have resulted in compressed forms of

suffix arrays that are able to consume significantly less memory that the standard form. Some

self-index representations such as the FM-index (Ferragina and Manzini, 2000) are able to

consume space less than n, effectively compressing the text and indexing it at the same time.

In general, the more compact the representation, the slower it is.

There have recently been developments in techniques for the construction and represen-

tation of suffix structures on disk (Tata et al., 2004; Cheung et al., 2005). However, external

suffix structures are still characterised by relatively long construction times, and either large

on-disk size or slow search speed. For these reasons, suffix structures are not the first choice

for indexing large volumes of data. A much more efficient (though less flexible) data structure

that is appropriate for many information retrieval tasks is the inverted index.
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2.6.2 Inverted indexes

An inverted index (Witten et al., 1999; Zobel and Moffat, 2006) is a data structure for the

fast lookup of features in a collection of objects. Inverted indexes play a central role in

information retrieval and related areas as the most important structures for the resolution

of queries.

Inverted indexes are similar to the traditional indexes that appear at the back of many

books. Much as a traditional index allows a reader to locate all uses of a particular term or

phrase without having to browse through the whole book, an inverted index rapidly returns

a list of locations within a collection where a particular feature occurs.

From the perspective of an abstract data structure, an inverted index is designed to

primarily support a single operation: given a feature descriptor, return the list — known

as the postings list — of all locations in the collection where that particular feature occurs;

some auxiliary data may also be returned. In the most common applications of inverted

indexes, the feature descriptor will be a natural language term, much as is the case with

traditional indexes. However, note that arbitrary features can be indexed, so long as they

have associated with them some notion of location.

While modern high-performance inverted indexes can have sophisticated implementations

in order to improve performance and scalability (Zobel and Moffat, 2006), the inverted index

is fundamentally a simple structure. In general, an inverted index consists of two sub-

structures: the vocabulary and the postings lists.

The vocabulary is a directory of all the feature descriptors in the index, organised so as to

facilitate high-speed (preferably constant-time) random access. Each entry in the vocabulary

entry optionally has associated with it some feature statistics — most commonly a feature

occurrence count, ft — and a pointer into the file of inverted lists indicating the beginning

of the postings list for that feature.

A postings list should contain a series of entries indicating the location of each occurrence

of the feature. The exact composition of each entry is dependent on the specific use to which

the index is being put. In the classic application of indexing terms in a document collection,

a minimal postings list contains d, the document identifier, and fd,t, a count of the number of

times that term appears in the document. A finer-grained index might also contain the offset

within the document of each term occurrence. Other applications may contain completely

different identifying data depending on the nature of the features being indexed; the only

requirement is that the entry should give some indication of the location of the feature.
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con--quest

||| ||| |

consequent

Figure 2.5: An optimal alignment between the two strings ‘conquest’ and ‘consequent’. The

dashes represent gaps, and the vertical bars represent matches in the alignment. In this case

the LCS is ‘conquet’.

In the context of information retrieval, the features being indexed are generally collection

terms. For this task, a carefully implemented inverted index generally consumes less than

one-fifth of the collection size and can be constructed at a rate of several gigabytes per hour

on a standard workstation (Heinz and Zobel, 2003). Note that inverted indexes cannot be

used for querying of partial-terms, or in situations where there is no such concept as a term.

These restrictions do not apply to suffix structures.

2.7 Approximate string matching

Approximate string matching addresses the task of finding matches between pairs of strings

that are similar, but not identical. Approximate string matching has applications in many

areas including spelling correction (Glantz, 1957; Damerau, 1964), version control (Tichy,

1985) and computational biology (see Section 2.8).

Early work concentrated on practical and theoretical concerns surrounding solutions to

the longest common subsequence (LCS) problem (Navarro, 2001). The LCS task is, given

a pair of strings S and T , to find the longest string that is a subsequence of both strings.6

Another way of viewing the problem is as finding the best alignment between the two strings:

inserting gaps in the strings so that the maximal number of elements in the two strings match.

The LCS is simply the string of characters that match under the best alignment. Figure 2.5

illustrates an alignment between the words ‘conquest’ and ‘consequent’. The LCS, derivable

immediately from the alignment, is ‘conquet’.

Closely related to LCS is the Levenshtein distance (LD) or edit distance of a pair of strings.

The LD measures the number of atomic string operations (insert, delete and substitute)

6Subsequences should not be confused with substrings. A subsequence may have gaps in it, whereas a

substring may not. For example, ape is a subsequence of apple, but it is not a substring. Algorithms for

dealing with the two are generally quite different.
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required to transform a source string S into a target string T . LD and LCS are linked by a

very simple formula: LD(S, T ) = |S|+ |T | − 2|LCS(S, T )|. Referring again to Figure 2.5, the

Levenshtein distance can be calculated by summing the number of positions in the alignment

that are not connected by vertical bars.

There are several approaches to solving the LCS/LD problem; for a full review see Navarro

(2001). Here we discuss the dynamic programming approach.

When aligning a pair of strings, we can imagine that we have a pointer to the beginning

of each. At each iteration, we can choose to advance the pointer in one or other of the

strings (corresponding to an insertion or a deletion), or to advance it in both (corresponding

to a match or a mismatch). We can do this computationally by choosing each of the three

possible actions, summing the score incurred with the recursively calculated edit distance

of the rest of the string, and returning the lowest of the three values. This process is,

however, extremely inefficient as it repeatedly computes the same intermediate steps for

many different permutations. Using a dynamic programming matrix such as the one in

Figure 2.6 effectively collapses all the different recursive branches onto the one matrix, and

requires only O(|S| × |T |) computations.

The dynamic programming matrix is filled from the top-left corner in either row-major

or column-major order. A cell Ci,j is updated according the following formula:

Ci,j = min(Ci−1,j−1 + δ(xi, yj), Ci,j−1, Ci−1,j) (2.12)

where δ(x, y) = 0 if x = y and 1 otherwise.

Hunt and McIlroy (1976) used the dynamic programming approach (coupled with some

heuristic optimisations) in writing a line-oriented program that takes two files and produces

a delta, a summary that describes how one file differs from the other. The program, diff,

is still a core utility on UNIX systems 30 years after its creation. It has many uses, from

simple inspection of changes between files to space-efficient version control and distribution

of software update patches.

The LCS/LD approach can be generalised to more sophisticated types of approximate

matching — such as genomic alignment — by using more complex scoring schemes (see

Section 2.8.1).

While the LCS/LD paradigm is quite a successful one for identifying the differences and

similarities between a pair of strings, there are some contexts in which it can be seen to

overestimate the difference (or underestimate the similarity) between a pair of strings. In
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Figure 2.6: A dynamic programming matrix that calculates the edit distance between the

strings conquest and consequent. The optimal alignment that leads to the final score of three

is in bold.

particular, there is no provision for block transposition between a pair of strings. Figure 2.7

shows the alignment between the two strings abcdefghij and fghijabcde using LCS. The

resulting edit distance of ten seems like an overestimate of the ‘true’ level of dissimilarity

between the strings. In particular, it is an overestimate of the effort required to transform

one string into another under a plausible user model.

Heckel (1978) proposes a simple algorithm for a diff -like program that takes block trans-

positions into account. The algorithm is, however, heuristic in nature and relies on the

presence of unique tokens in the files being compared; in their absence the algorithm be-

comes unreliable and failure-prone.

Tichy (1984) describes a more refined algorithm based on suffix trees. A suffix tree is

constructed for the source string S, and then each suffix of the target string T is queried

against the suffix tree. The node at which the search terminates defines a block transposition

between the strings. All remaining tokens that are not part of any block transposition can

be considered to be insertions or deletions. Tichy wrote an implementation of the algorithm
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abcdefghij-----

|||||

-----fghijabcde

Figure 2.7: An alignment between two strings ‘abcdefghij’ and ‘fghijabcde’ that differ only by

a single block transposition. Their Levenshtein distance is ten.

called bdiff. On a repository of source code, bdiff produced deltas that were on average 7%

smaller than those produced by standard diff (Hunt and McIlroy, 1976).

Greedy string tiling (GST) (Wise, 1993; 1996) is another alternative for computing a

transposition-aware distance metric. It differs from the approach of Tichy by creating a

covering set over one string using substrings of other, and operates in its most efficient

guise by using Rabin fingerprinting (Karp and Rabin, 1987; Broder, 1993). Wise claims

significance for the fact that, in contrast with the bdiff method of Tichy, under GST the

same block cannot be mapped twice onto the other string. However, it is unclear why this

distinction is important.

Another class of approaches quantifies the distance between a pair of strings based on

principles in algorithmic information theory (Li and Vitányi, 1997). Algorithmic information

theory is based on Kolmogorov complexity, a measure of the information content of data based

on the size of the smallest program able to generate that data on a universal computer such as

a Turing machine. While the Kolmogorov complexity of a string is formally uncomputable, it

defines the lower bound on the compressibility of a string; thus, the Kolmogorov complexity

can be approximated from above by the simple expedient of compressing the string in question

using some compression algorithm. The better the algorithm, the closer the approximation

to the true Kolmogorov complexity of the string.

The reader may observe that many of the most effective modern compression schemes op-

erate according to the principles of traditional information entropy (Shannon, 1948). Indeed,

Kolmogorov complexity has many symmetries and equivalences with traditional Shannon

entropy (Grünwald and Vitányi, 2006) but, because of its emphasis on the actual object

rather than an assumed underlying model (generative distribution), it arguably has a more

straightforward interpretation in the context of evaluating the difference between a pair of

strings.



2.8. SEQUENCE HOMOLOGY SEARCH 49

The transformation distance (Varre et al., 1998) is one measure of difference deriving

from the principles of Kolmogorov complexity. The basic concept is simple: using a scripting

language consisting of a set of operations such as insertions, deletions, transpositions and

reversals, the transformation distance between two strings is the size of the smallest script

that can transform one string into another. The degree of difference between a pair of strings

is effectively defined under this measure by the amount of effort required to describe the

difference.

Bennett et al. (1998) provide a more formal measure called information distance, which is

motivated directly from Kolmogorov complexity theory. This approach was further refined by

Li et al. (2003) to yield a measure known simply as the similarity metric. Li et al. make the

claim that the similarity metric subsumes all other string similarity metrics in the sense that

(theoretically at least) any meaningful similarity between a pair of strings will be captured

by this metric.

2.8 Sequence homology search

Modern sequencing techniques allows biologists to rapidly map large quantities of nucleotide

and protein information. Once biological material has been sequenced, it is usually of interest

to determine the biological function of the material. Inferring this function directly from the

biological code is well beyond the state of the art in biology. In order to minimise the

expenditure of effort, the most common starting point for determining the function of a

particular piece of DNA or protein is to find its homologues: items of genetic material that

share an evolutionary history with the item under investigation. Homologous sequences,

though they may not be identical, are in general highly similar and usually perform the

same biological function, perhaps in a different species. If a homologue of the sequence

under consideration has been previously studied and its function determined, this can save

an enormous amount of research effort.

Because pairs of homologous sequences tend to be similar, homology search is a task that

can be automated with a reasonable degree of accuracy. Superficially, homology search is

much like ranked text search: a query (in this case, the sequence of interest) is submitted to

the system, and the system returns a set of sequences from its underlying database, ranked in

terms of decreasing likelihood of homology. The user can peruse this result list of sequences

in an attempt to learn more about the query sequence. However, several features of biological

sequence data and the homology search task differ fundamentally from natural language data
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and the relevance search task.

The main difference between sequence data and natural-language text is the total absence

of structure and delimitation in sequence data; a sequence is one long string, and there is no

higher-order structure in analogy with words, sentences, paragraphs, and so on. Thus, the

query cannot be straightforwardly broken down into subcomponents, as is typically the case

with natural-language search. Thus, standard inverted-index strategies as described earlier

are not suitable this domain.7 The sequence homology search problem is essentially one of

approximate string matching; indeed, the most popular and effective strategies for searching

sequence databases for homologues are based on approximate string matching techniques.

These techniques adapted specifically to the domain of biological sequences using knowledge

of the effects of the evolutionary process on such sequences; we discuss such strategies in the

following sections.

2.8.1 Global alignment

The global alignment score of a pair of sequences quantifies the level of similarity between

the sequences as a whole: the higher the score, the more similar a pair of sequences is

considered to be. First described by Needleman and Wunsch (1970), this score is calculated

in a similar way to the length of the longest common subsequence as discussed in Section 3.1.

In the simplest case — generally used for nucleotide alignment — the global alignment is

parameterised by three values: the match score, the mismatch penalty, and the insertion

penalty. The match score is added to the alignment score for each point in the alignment in

which the nucleotides match; the mismatch penalty is subtracted from the alignment score

for each point in the alignment at which the nucleotides do not match; the insertion penalty is

subtracted from the alignment score for each point in the alignment where there is an insertion

(or, equivalently, a deletion). Global alignment of nucleotide sequences as described can be

handled using a dynamic programming matrix exactly as described in Section 3.1, using the

following update function:

7There have been some attempts to conduct homology search using inverted indexes. The cafe sys-

tem (Williams and Zobel, 2002) is one such implementation. However, the accuracy of such systems is

generally inferior to the approaches described in this section.
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B(i, j) = max



















B(i− 1, j − 1) + s(xi, yj)

B(i− 1, j)− e

B(i, j − 1)− e

(2.13)

where s(x, y) is equal to the match score if x = y and to the mismatch penalty otherwise,

and e is the insertion penalty.

Needleman and Wunsch (1970) point out that, rather than having simple match and

mismatch scores, the global alignment score can be generalised by defining a different score for

each possible pairing of characters in a particular alignment. This observation is particularly

important for generating a sensitive global alignment score for protein sequences. Protein

alignment is more complicated than nucleotide alignment because of the chemical similarities

that exist between many of the 20 amino acids that constitute the alphabet of a protein

sequence (Taylor, 1986). It is not unusual for the evolutionary process to cause an amino

acid in a particular location in a sequence to be substituted by another amino acid with

similar chemical properties, leading to no alteration in the structure or behaviour of the

protein. Thus, while a match between amino acids within an alignment always has the

highest significance, the significance of mismatches varies depending on the particular amino

acids that are involved. Related to this is the fact that some amino acids have more similar

coding at the DNA level, meaning that it is more likely that a point mutation in the DNA

would cause the amino acid substitution.

In order to deal with this issue, alignment of protein sequences is not a simple matter of

determining a match score and a mismatch penalty. Rather, it is carried out with the use of a

substitution matrix, which defines the score that should be assigned to any corresponding pair

of amino acids in an alignment (Dayhoff et al., 1978; Henikoff and Henikoff, 1992). Various

different substitution matrices have been developed, and the choice of which to use is generally

guided by the types of homologies the searcher wishes or expects to find; discussion of the

way in which the various substitution matrices are constructed is beyond the scope of this

work. When a substitution matrix is used, the score s(x, y) in Equation 2.13 is derived from

row x and column y in the matrix. The commonly-used BLOSUM62 matrix is presented in

Figure 2.8.1. As an example, a match between the residues R and K would yield a score of

two; that is, S(R, K) = 2.
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A R N D C Q E G H I L K M F P S T W Y V B Z X U

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 -1 -4
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -1 -4
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -1 -4
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 -1 -4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 -1 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -1 -4
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -4
U -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1

Table 2.1: The commonly-used BLOSUM62 scoring matrix (Henikoff and Henikoff, 1992).
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zzzzzzabcdezzzzz

|||||

xxxxxxabcdexxxxx

Figure 2.8: Two strings with high local similarity but low global similarity. A global alignment

technique may not identify the highly-conserved region in the middle of the two strings.

2.8.2 Local alignment

When using global alignment techniques such as described above, sequences that combine

overall dissimilarity with local regions of high similarity will not be identified as having a

high-scoring region: the penalty scores for the mismatching regions will counteract the effect

of the high-similarity regions, leading to a mediocre score overall.

However, sequences of the kind described — global dissimilarity interspersed with local

similarity — are common and are often of interest to researchers (Myers, 1991). It is hypoth-

esised that highly-conserved regions are less subject to mutation precisely because of their

central importance to biological function, while other parts of the sequence, in particular

junk DNA, may exhibit significant genetic drift. Thus, the presence of such highly-conserved

regions within otherwise divergent sequences is quite telling and should not in general be

overlooked.

Smith and Waterman (1981) describe an algorithm for local alignment, in which the score

returned is the highest score returned for any possible pair of substrings of the two sequences

under consideration. That is, we consider alignments that do not span the entire length of

the sequences under consideration. In this way, strongly matching local regions can lead to

a high alignment score, free from the penalties incurred when aligning dissimilar regions of

the sequences.

The Smith-Waterman algorithm uses a dynamic programming matrix in much the same

way as the global alignment techniques of Needleman and Wunsch (1970). The main differ-

ence in computing the alignment matrix with local alignment compared to global alignment

is that the score for a cell in the matrix is never allowed to be negative. Thus, the update

function for cells in the alignment matrix is amended to the below:
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B(i, j) = max



































B(i− 1, j − 1) + s(xi, yj)

B(i− 1, j)− e

B(i, j − 1)− e

0

(2.14)

The effect of this change is to allow the alignment to begin at arbitrary points along the

sequence pair by discounting negatively scoring regions of the alignment without penalty.

The other change is along the top and left boundaries of the alignment matrix, where the

values of cells in the hypothetical row B(0, ·) and column B(·, 0) is set to zero, rather than

−∞ as is the case for global alignment.

The other difference is in the interpretation of the alignment matrix once computed.

Instead of looking to the bottom right cell B(|x|, |y|) to determine the optimal alignment

score as is the case for global alignment, the optimal local alignment score is determined by

the maximum value of any cell in the matrix. This discounts trailing regions of the alignment

that make a net negative contribution to total alignment score.

2.8.3 Heuristic search algorithms

The dynamic programming approaches described in the preceding sections are excellent for

finding an optimal alignment between a pair of sequences in a relatively short time. Finding

the optimal alignment between a pair of sequences allows for highly accurate and sensitive

scoring of similarities between sequences. However, the dynamic programming approach is

computationally intensive, and does not scale well to query-based search against the large

(and rapidly growing) sequence databases commonly available today. As a rough indication,

use of the Smith-Waterman local alignment algorithm for a typical query sequence against

the GenBank (Benson et al., 2005) nonredundant protein database (approximately 900 MB

at the time of writing) takes approximately one hour on a Pentium 4 class desktop computer;

searching the much larger GenBank nonredundant nucleotide database (NR) takes several

days.

Apart from the frustrating latency that such long search times impose on researchers,

the enormous computational resources required to complete just one such search contributes

significantly to the expense of conducting biological research. In order to increase the respon-

siveness of and reduce the cost of query-based search against these large sequence databases,

a number of heuristic approaches for search have been developed. These heuristic techniques
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are based on the observation that calculating a full optimal alignment score using a technique

such as Smith-Waterman is a wasted effort for a majority of sequences in the database for

any given query. This is the case for several reasons. First, a typical query will be highly

dissimilar to most sequences in the database. No matter how a pair of dissimilar sequences

are aligned, the alignment score will be no more than random noise, far below the threshold

of statistical significance. Thus, exhaustive calculation of a precise optimal alignment score

for such a sequence pair is entirely unnecessary. Second, even if a pair of sequences do contain

significant similarities, a large portion of the alignment is infeasible; once again, computing

cell entries in such areas of an alignment matrix is likely to be fruitless work.

Heuristic search techniques take advantage of the above observations to attempt to iden-

tify sequences that are highly unlikely to be similar to the query sequence (or, equivalently,

identify sequences that are highly likely to be similar) using a less computationally expen-

sive technique than dynamic programming. If they are able to do this successfully, a vast

majority of the expensive alignment operations for the query can be avoided.

FASTA and BLAST

The FASTA (Pearson and Lipman, 1988) and BLAST (Altschul et al., 1990; 1997) heuristic

homology search algorithms are the best-known heuristic search algorithms. They both

operate on similar principles, though the latter has largely superseded the former as a result

of a number of optimisations that make it significantly faster.

Both FASTA and BLAST use a multi-stage incremental search technique, using crude but

efficient techniques to screen out unpromising areas in the alignment space before progressing

to more sensitive techniques that are applied to the smaller remaining search space. Though

there are significant variations in detail between the FASTA and BLAST implementations,

the search stages can be categorised as (in increasing order of sensitivity): hit detection, hit

extension (ungapped alignment), and restricted gapped alignment.

In the hit detection phase, short overlapping segments of the query sequence (for example

nucleotide subsequences of length three) are inserted into a lookup table.8 The sequences

in the database are then sequentially scanned, with each chunk in the database sequences

being compared to the lookup table, and a hit recorded. This stage serves to screen out

database sequences that are grossly dissimilar to the query sequence, as well as identifying

diagonals within promising sequences that may form part of a successful alignment. Thus,

8A small in-memory inverted index.
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the search space is reduces in a twofold manner, both by reducing the number of sequences

under consideration and by reducing the search space within the alignment space of those

sequences that remain.

The hit extension stage varies significantly between FASTA and BLAST, but the basic

principle remains the same: the hits detected in the previous stage are extended out along the

same diagonal in order to create a series of ungapped local alignments, which may represent

fragments of a full gapped alignment. Once again, this stage filters out many sequences

that fail to demonstrate potential to produce a high alignment score with the query, while

restricting the feasible area of the alignment matrix that must be searched for those sequences

that do move on to the next stage.

The final stage of the FASTA and BLAST search process is a gapped alignment based on

the results of the ungapped alignments. FASTA uses a banded alignment process (Chao et al.,

1992) to restrict gapped alignment to a region surrounding the best ungapped alignment.

BLAST uses seeded gapped alignment with dropoff (Altschul et al., 1997), which is another

way of restricting the alignment to promising areas of the dynamic programming matrix. In

both cases, the result is a list of approximations to the true optimal gapped alignment score

for a variety of candidate sequences from the database. A statistical thresholding process

then determines the set of results to return to the user.

Both FASTA and BLAST are several orders of magnitude faster than SSEARCH, return-

ing results in minutes rather than hours or days. The tradeoff is a small but significant drop

in overall accuracy. While BLAST in particular produces results in acceptable times even for

large databases, heuristic search algorithms for homology search are still much slower than

index-based keyword searches of databases of similar size; where one expects an index-based

search system to return results in a fraction of a second, BLAST may take several minutes.

Improving the speed of homology search is therefore still an important goal.

Iterative profile-based search

While standard alignment-based heuristic search techniques work well in many situations,

they sometimes lack the sensitivity to perform effectively for distant-homology searches. It is

often the case that distant homologues, while possessing distinct similarities, do not produce a

statistically significant score when directly aligned. The quality of distant-homology searches

can be improved by using profiles: representations of a class of related sequences. Because

they allow characteristics to be inferred over a whole class of sequences, profiles are able to
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capture a richer set of associations and relationships than can be done by individual sequence

representations. For example, highly conserved areas become clearly identified, whereas areas

of genetic drift can be discounted.

Position-specific scoring matrices (PSSMs) are a common choice for profile representa-

tion (Gribskov et al., 1987). A PSSM for a group of related sequences is built by first

performing a multiple alignment of those sequences. For each position in the multiple align-

ment, a separate scoring vector is constructed based on the elements present in that position.

The scoring vector contains one entry for each element in the alphabet and specifies the score

that should be received for aligning that element against the current position in the profile.

In general, the vector for a given position will score highly for those residues (in the case

of proteins) that are present in that position, and score worst for those residues that are

unrelated to those present. The mechanics of alignment do not change substantially: instead

of aligning a candidate sequence against the query using a standard alignment matrix such

as BLOSUM, the score is calculated by using the appropriate scoring vector for each position

in the alignment.

PSSMs are notable because the search mechanics are not substantially altered in compar-

ison with standard alignment; as a consequence, search with PSSMs can be integrated with

standard heuristic search algorithms such as BLAST with only a minor effect on search speed.

Altschul et al. (1997) introduce PSI-BLAST, a modified version of the BLAST heuristic that

works with PSSMs.

PSI-BLAST does not require the user to manually annotate sequences in order to build

up a profile; rather it builds a profile automatically from a standard query sequence using a

technique called iterative search. The first step of the iterative search process is to perform a

standard BLAST search with the user-supplied query. The highest-scoring results from this

search are assumed to be homologues of the query sequence and combined with it to form a

PSSM. PSI-BLAST is then invoked to search the database with the newly-generated profile.

The high-scoring results are once again combined to form a new profile, and the process

is repeated. This continues so long as there are new sequences that produce statistically-

significant alignments, or until a user-defined maximum number of iterations is reached. The

iterative process allows more distant homologues of the query sequence to be discovered,

because the profile captures common characteristics of the group that may not have been

present in the original sequence. Note that the iterative process is analogous to the pseudo-

relevance feedback strategy in text-based information retrieval, which similarly aims to make

the search more sensitive to superficially-distant matches (Rocchio, 1971).
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Iterative search can be very sensitive at finding distant homologues of the query sequence.

However, there are some dangers with the technique: the first of these is that the inclusion

of false-positives — non-homologues — in the profile at early iterations can compound and

lead to query drift in which the profile starts to represent a group of sequences that are not

related to the original query (Schaffer et al., 2001). A related danger, profile corruption, is

caused by the presence of high levels of redundancy in search results (Li et al., 2002). A

large number of near-identical sequences can heavily bias the profile and cause it to overfit,

leading to a profile that is not broadly representative of the class of homologues.

2.9 Summary

In this chapter, we have presented contextual background regarding the history and state

of the art in areas that are pertinent to the work described in this thesis. Material covered

in this chapter includes the problem of task definition for redundancy management, hashing

algorithms, the theory and practice of information retrieval, distributed information retrieval,

data structures for indexing, approximate string matching, and sequence homology search.

In the next chapter we present an examination of existing algorithms for the identification

of redundancy in text collections, including a detailed taxonomy and discussion of document

fingerprinting techniques.



Chapter 3

Detecting co-derivation

In Chapter 2 we discussed the issue of document co-derivation, and why the task of co-

derivative document discovery is interesting in the context of intra-collection redundancy

management. In this chapter, we describe three classes of algorithm that can be used for

detecting co-derivation: approximate string matching, term-vector algorithms, and document

fingerprinting. We discuss the strengths and weaknesses of each of these approaches. Having

identified document fingerprinting as the approach best suited for discovery of co-derivation

relationships in large collections, we proceed with a detailed exposition of this technique,

including areas of potential difficulty.

3.1 Approximate string matching

Approximate string matching (see Section 2.7) describes a class of algorithms that quantify

the degree of similarity between strings. In many cases, this quantification is an attempt to

approximate the amount of editing effort required to transform one string into another. As co-

derivation results from an editing process, we expect them to show higher similarity according

to such measures than documents that do not share any common heritage. Thus, approximate

string matching techniques are a plausible and appealing approach to the problem of detecting

co-derivatives.

Approximate string matching techniques have previously been used in this context. Wise

(1996) used his greedy string tiling algorithm in the construction of YAP3, a plagiarism

detection tool. The so-called similarity metric of Li et al. (2003) has likewise been used as

the basis for a plagiarism detection tool, SID (Chen et al., 2002; 2004), and also for building

a phylogeny of co-derivation for chain letters (Bennett et al., 2003). Other approximate

59
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string matching methods have not been explicitly used for the task of finding co-derivative

documents, though some — such as the transformation distance metric of Varre et al. (1998)

— have been used for a similar purpose for genomic search. Nonetheless it is apparent that,

for example, the volume of output produced by diff (Hunt and McIlroy, 1976) could be used

as the basis for determining the co-derivation status of a pair of documents.

A limitation of the approximate string matching algorithms discussed in Section 2.7 is

that they rely on computationally expensive pairwise comparisons of fulltext strings. That

is, a query of one string against a collection of strings usually requires that the full text of the

entire collection be read. In situations where a collection may occupy many gigabytes and

the number of matches is relatively sparse, this can be an extremely costly process. Under

such circumstances massive speed gains can potentially be made by using an index-based

approach.

3.2 Term-vector algorithms

Term-vector algorithms predict the co-derivation status of documents by comparing their

term vectors. A document’s term vector simply records the number of times that each term

in the collection vocabulary has occurred in that document. Term-vectors are useful in the

context of co-derivative detection as they behave in a predictable way under editing. It is

apparent that two identical documents will have identical term vectors; that is, each term

will occur in both documents an equal number of times. Insertions, deletions and edits will

cause the term vectors to diverge gradually rather than abruptly. Thus, a high level of

similarity between the term vectors of two documents is likely to be a robust predictor of

co-derivation.1

The advantage of using term-vector algorithms for detecting co-derivation relationships

between documents is that the process can be easily supported by a standard term-based

inverted index such as is commonly used for query-based search. The ability to use an

inverted index confers a significant speed advantage over the linear-pass approximate string

matching algorithms discussed in Sections 2.7 and 3.1.

Relative-frequency models are closely related to the vector-space model for query-based

search, though they do not share the same theoretical foundations. It is thus not surpris-

ing that early work in index-supported co-derivative detection used vector-space measures

directly. Sanderson (1997) was motivated by a desire to find nearly identical documents in a

1We discuss caveats and pitfalls of this assumption later in the section.
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collection of newswire documents from Reuters. In order to do this he simply fed the target

document as a (very long) query into an existing search system. Sanderson found that this

approach produced acceptable results, albeit on a small collection and on an easy task.

Both Shivakumar and Garćıa-Molina (1995), and Hoad and Zobel (2003) compare several

vector-space scoring functions with novel term-vector measures specifically designed for the

purpose of co-derivative document detection. While these new measures abandon the strict

theoretical underpinnings of the vector-space model, they are designed to be more sensitive

and discriminative at the particular task of co-derivative document detection. In particular,

they amend a deficiency of standard vector-space measures for this task, which is that they

do not penalise differences in term frequency between a pair of documents. For example,

if document A contains the word ‘aardvark’ seven times and document B contains it just

once then a vector-space measure would score this pair more highly than otherwise identical

documents in which the term ‘aardvark’ occurred once in each. This does not match our

intuition when it comes to co-derivative detection: the large discrepancy between instances

of the word ‘aardvark’ does not increase our confidence in the common origin of the two

documents; indeed, it decreases it.

The relative-frequency model (Shivakumar and Garćıa-Molina, 1995) uses a two-stage

scoring process. In the first stage, corresponding terms between a document pair are screened.

They are only retained in the closeness set if the difference between the relative frequencies

is below a certain tolerance level specified by the user. Once the closeness set has been

assembled the terms within it are combined into a score using an asymmetric measure based

on the vector-space cosine measure. The higher of the two scores using this asymmetric

measure is then assigned to the document pair as its similarity score. In effect, then, the

relative-frequency model is very similar to the standard vector-space model except that terms

with significantly different relative frequencies are discarded from the calculation.

The family of identity measures (Hoad and Zobel, 2003) do not have the preprocessing

step of the relative-frequency model. Rather, differences in frequency between corresponding

terms are directly incorporated as a penalising factor in the scoring function. The identity

measures also penalise a pair of documents for the difference between their two lengths, the

intuition being that a pair of co-derived documents should be of similar length. A family of

measures are built within this framework by varying the presence and weighting of different

factors used by the measure.

Shivakumar and Garćıa-Molina (1995), and Hoad and Zobel (2003) compared their term-

vector based measures for co-derivative detection to standard vector-space measures (in par-
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ticular cosine). In both studies the accuracy and sensitivity of the customised term-vector

measures were clearly superior to those of cosine and other vector-space measures.

The identity measure was used at the sentence level by Metzler et al. (2005) to try to

identify sentences that were part of the same information flow. This measure performed

reasonably well, but did not outperform a variety of other measures for this task.

While relative-frequency techniques are reasonably robust and show graceful degradation

in the face of co-derivation by revision, it is worth noting that the behaviour of these mea-

sures is less impressive when other kinds of co-derivation are considered. As an example,

taking a document and concatenating it to itself will result in a new document that does

not register a particularly high similarity score using the measures of Hoad and Zobel or

Shivakumar and Garćıa-Molina. More disturbingly, a digest-style document that contains

excerpts from various sources will most probably score poorly against all the documents

from which it is derived for all of the scoring functions described above. Thus, one must

be careful in evaluating the suitability of term-vector techniques for co-derivative detection.

While existing experimental work suggests high accuracy in the domains investigated, this

may not be the case in domains where the prevalent form of co-derivation does not preserve

the correspondence between term-vectors.

The term-vector approaches described have not been used for the discovery problem in

any published work. Further innovation may be possible, but at first glance such approaches

are not likely to be suitable for this problem. While it is certainly possible to avoid an explicit

pairwise comparison process by traversing the index and updating accumulators for all pairs

of documents that appear in each postings list, this is likely to consume an infeasible quantity

of resources. In an inverted index for a typical document collection, there will be some terms

that have extremely long postings lists associated with them. A quadratic expansion of

such lists would result in an enormous expenditure of time and memory; consider that for

a term that appears in 100,000 documents, nearly 5,000,000,000 accumulators would need

to be managed. While accumulator-limiting strategies may be of some help, term-vector

approaches must be considered unsuitable for the discovery problem until demonstrated

otherwise.

3.3 Document fingerprinting

The techniques for detecting co-derivatives described in the previous sections operate either

directly on the text of document pairs (Section 3.1), or by comparing term distributions using
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a standard term-based inverted index (Section 3.2). An alternative approach is to attempt

to extract indexable features from the collection that are individually and directly indicative

of document co-derivation. The presence of such a feature in two documents is evidence of

co-derivation between the two documents, irrespective of the distribution of other features.

For such an approach to be successful, the features gathered must possess the following

properties:

1. Relatively high probability of uniquely identifying a document as having a certain origin

(discrimination)

2. Relatively low probability of being altered by minor alterations to the document (ro-

bustness)

3. Domain independence

4. Economical extraction

5. Economical storage

Document fingerprinting is the name for a loose class of techniques that aim to identify

co-derivative documents using features that conform to the properties described above. In

the following sections, we present a taxonomy of document fingerprinting techniques and

variants.

One property that is common to all document fingerprinting techniques is that they take

a syntactic, rather than a semantic, approach to grouping documents. It is possible, and in

fact common, for two otherwise unrelated documents to be semantically highly similar. An

example would be essays from two students in response to the same assignment questions.

By contrast, a high correlation of syntactic features such as identically constructed sentences

is overwhelmingly suggestive of a co-derivation relationship; in the case of the student essays,

a number of identical paragraphs is strong evidence of plagiarism. The emphasis on syntac-

tic similarity clearly distinguishes document fingerprinting from the wide variety of search

and clustering techniques that are intended to find semantic (topical) similarity between

documents.

3.4 Fingerprinting: a brief example

In this section we briefly describe a näıve but plausible approach to addressing the search

and discovery problems. We then discuss the problems inherent in this näıve methodology.
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Figure 3.1: A high-level example of the generation of a fingerprint index.

(a) The features generated for three hypothetical documents.

(b) The inverted index constructed from the features extracted in (a).

Let us imagine for the moment that we are able to extract features from documents that

are reasonably faithful to the properties described above in Section 3.3. For the purposes

of this description, we are not concerned with the precise nature of the features, nor that

of the feature extractor. We can view the system as a ‘black box’ that takes a document

and returns a set of features. This abstracted view is illustrated for a hypothetical collection

of three documents A, B, and C in Figure 3.1(a). Once features have been extracted from

all documents in a collection, they can be arranged into an inverted index structure; see

Figure 3.1(b). With an inverted index, we are easily able to access a list of documents that

contain a particular feature, allowing for easy querying based on feature values.

For the search problem, one possible algorithm is as follows: given a query document,

we use our black box to extract all relevant features from this document. We then initialise

a counter for each document in the collection being queried.2 For each feature extracted

from the query document, the postings list for the corresponding feature is extracted from

the inverted index. For each document in that postings list, the counter is incremented.

After all features have been processed, the counter for each document contains a count of the

2In document-at-a-time processing we do not need to initialise an array of accumulators; however, this

implementational variant is beyond the scope of this thesis.
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Figure 3.2: Use of a feature index for the search problem. Features are extracted from the

query document (1), postings lists for each feature are retrieved from the index (2), and

feature co-occurrences are counted for each document in the collection (3).

number of features the document has in common with the query. This process is illustrated in

Figure 3.2. A threshold can be set whereby all documents that share more than the specified

number of features with the query document can be flagged as co-derived.

In the discovery problem we wish to find all pairs of documents that are co-derived. A

straightforward way of solving this problem is to take each document in the collection in

turn and use the algorithm described above to solve the search problem for that document,

aggregating the results at the end. However, this approach is extremely inefficient, and we

now describe a more sophisticated algorithm — first proposed by Broder (1997) — that

operates directly upon the inverted index.

Using this approach, each postings list in the index is considered separately. The strict

upper triangle of its Cartesian product is taken to yield a set of document-pair tokens. Each

token indicates that the specified document pair have one shared feature. Applying this

operation on a postings list with a single entry yields an empty set; a postings list with n

entries yields n(n−1)
2 document-pair tokens. Once all the document-pair tokens have been

extracted from the inverted index, they are sorted so that tokens for the same document

pairs are adjacent. These tokens are then aggregated to yield a count of common features

between each pair of documents in the collection. Figure 3.3 illustrates the process. The

count of common features can then be used as a basis for classifying document-pairs as co-

derived. However, as the collection size grows, this process can become prohibitively resource-

intensive, in particular as a result of the quadratic expansion of postings lists. Techniques to

manage this problem are considered in Section 3.9.
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Figure 3.3: Use of a feature index for the discovery problem. For each feature in the index (1),

the postings list for that feature is expanded into a set of document-pair tokens (2). Document-

pair tokens are sorted (3) and aggregated (4) to produce a feature co-occurrence count for each

pair of documents in the collection.

It is apparent from this brief description of the operation of document fingerprinting

that at a broad conceptual level it is a simple, almost trivial process. The transition from

the basic concept to an efficient, effective state-of-the-art implementation is far from trivial,

however. Most particularly, we have yet to address the nature of the features extracted from

a document. Even after having established a way of selecting suitable features, we must

decide how best to use the evidence available to maximise the accuracy of the technique.

Furthermore, the algorithms we describe above can quickly encounter resource limitations;

balancing sensitivity and effectiveness with tractability and efficiency therefore becomes ex-

tremely important.

In the following sections we discuss in some depth the considerations that shape the

creation of an efficient and effective document fingerprinting system, and undertake a detailed

survey of existing approaches.

3.5 Feature extraction

There are two underlying approaches to harvesting robust syntactic features for co-derivative

document detection. The first of these, chunking, is based on contiguous text segments, usu-
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ally (though not always) of the same length. The other approach, which we call deterministic

term extraction, uses heuristics to extract a subset of terms from each document such that

two near-identical documents are likely to have the same subset of terms selected. We de-

scribe these two approaches to feature extraction, their variations, and implementational

considerations in the following sections.

3.6 Chunking

It seems intuitive that the longer a given string of text, the less likely it is that exactly the

same string appears in two unrelated documents. Probabilistic language models (Ponte and

Croft, 1998) seem to support this intuition, with multiplicative factors over a large vocabulary

making it improbable that an identical string of any reasonable length will be generated for

two separate documents. The likelihood that several such strings will co-occur between a

pair of documents by chance is vanishingly small. While it is not necessarily the case that

co-derived documents must share common strings, Brin et al. (1995) show that significant

editing effort is required before they do not. Given that the presence of such strings is a

strong predictor of co-derivation, we assert that they are viable features upon which to base

a tool for detecting co-derivative documents.

It was this observation that led Manber (1994) to use contiguous 50-byte strings as the

basis of sif, a tool for finding similar (but not identical) files within a file system. We refer

to such contiguous-text-sequence features as chunks, after Brin et al. (1995).

When of an appropriate length, it is easy to see how chunks satisfy conditions 1-4 laid

down in Section 3.3. It is unlikely that two documents of completely independent origins

would share an identical sequence of — for example — eight words; a minor change to a

document leaves a large majority of chunks unaffected; the indexing of chunks is unaffected

by domain issues such as language; and they can be easily parsed from most documents. We

see how to make these features economical to store later in the section.

3.6.1 Chunking strategies

The dominant technique for breaking a document up into chunks is shingling, in which the set

of chunks consists of all substrings of the documents that are of a given length with respect

to the chosen unit of granularity.3 For example, a document may be shingled by extracting

— as Manber (1994) did — all substrings of the document that are 50 bytes in length, or

3The issue of chunking granularity is discussed in detail in Section 3.6.2.
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all substrings of length four words. Chunks produced by the shingling strategy are often

referred to as shingles. The set of shingles in a document is extracted by passing a sliding

window of the specified length over the document and recording all chunks; this approach is

illustrated in Figure 3.4(a).

Brin et al. (1995) define an alternative approach to chunk extraction known as hashed

breakpointing. With this approach, chunks are not of a fixed length and they do not overlap.

Instead, a chunk is built up incrementally: as a document is tokenised, each token is hashed;

if the hash is not equal to 0 modulo some parameter m then it is added to the current chunk;

if the hash does equal 0 modulo m then the token is considered to be a breakpoint and a

new chunk is started. The length of chunks is thus not fixed but rather follows a geometric

distribution with a mean length of m. Chunks do not overlap because they cannot cross a

breakpoint. Chunking using hashed breakpoints is illustrated in Figure 3.4(b).

Brin et al. (1995) list several strengths of the hashed-breakpoint chunking strategy. The

most important of these is a reduction in the number of chunks in a document as a con-

sequence of the non-overlapping nature of hashed breakpointing. For fixed-length chunking

and a chunk length of 10 words a document of length n words contains n − 9 chunks. By

contrast, hashed breakpointing with m set to 10 (leading to a mean chunk size of 10) results

in only n/10 chunks being selected on average. A similar result could be obtained by us-

ing fixed-length chunks and not allowing them to overlap, but this would make the chunks

extremely unstable: the insertion of a single word in one of a pair of otherwise identical

documents could cause the set of chunks extracted from each to be completely different. A

similar insertion using hashed breakpoints would only corrupt a single chunk. Thus, the

strategy achieves a substantial reduction in the number of chunks that need to be extracted

(and thus indexed) but without compromising the fundamental robustness of chunking.

Hashed breakpointing is also robust in an adversarial situation: in order to ensure that a

pair of documents share no common chunks, an adversary must rewrite every element of the

document. This is superior to fixed-window chunking for which, given a window size of n, it

is sufficient to change every nth element. Adversarial scenarios occur in a variety of contexts,

plagiarism being the most obvious example; Brin et al. (1995) motivated their work in the

context of detecting copyright infringement in digital libraries.

However, this particular strength of hashed breakpointing is also a weakness. The same

unpredictability that requires an adversary to rewrite the entire document for security means

that hashed breakpointing provides no guarantee of a minimum number of chunks in common

between a pair of co-derived documents, unless those documents are exact duplicates. The
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Figure 3.4:

(a) The shingling chunking strategy in which all strings of a fixed length are extracted by

passing a sliding window over the text.

(b) The hashed breakpoint chunking strategy, in which chunks are non-overlapping and the

boundary between chunks is determined by hashing each word and breaking when the hash

evaluates to 0 modulo some value m, in this case 4.

variable length of chunks in this scheme also means that chunks cannot be considered to

have equal weight when attempting to quantify the level of co-derivation between a pair of

documents.

3.6.2 Chunking granularity

When building a feature extractor based on chunking, one must select the level of granularity

at which the chunking is to operate. It would at first seem best to use the byte as the atomic

unit for document fingerprinting. It is trivial to convert a document into a stream of bytes

(primarily because it is a stream of bytes in the first place). In standard natural-language

documents, bytes correspond to characters. As characters can be considered the atomic units

of natural language, byte-level granularity seems to be a sensible choice.

Despite the simplicity of byte-level granularity, many implementations of document fin-

gerprinting use a coarser granularity. The reason is that the finer the level of granularity, the

greater the number of chunks in a document of a given size; this in turn leads to a greater re-

source burden during processing. This tradeoff has seen experimentation with larger atomic

units, in particular words and sentences.

The number of chunks of length m in a document of length n units is n −m + 1. Our

examination of a typical document (in this case, a conference paper) showed it to be 44,559

bytes long, and consist of 6,478 word occurrences. Thus, with byte-level granularity and a
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chunk length of 50, the document will yield 44,510 chunks. If word-level granularity were

used instead with a chunk length of 8 words (roughly the same length) then there would only

be 6,471 chunks, a reduction of over 85%. A further large saving could be gained if sentences

were used instead of words.

Of course, as the granularity increases there is a commensurate loss in sensitivity: fewer

changes need to be made for two documents to have no chunks in common. Another negative

is a loss of domain independence. While all documents stored on a modern computer are

composed of bytes, the same cannot be said for higher levels of granularity. Parsing words

from a document is not a trivial task, and the results can be strange if a document diverges

significantly from the typical characteristics of a natural-language document. Sentences and

higher-order syntactic structures are more troublesome again: sentence parsers are easily

confused and even reasonably regular natural-language documents often contain passages in

which the notion of a sentence is not valid, such as tables or mathematical equations. Brin

et al. (1995) report that their sentence-level fingerprinting system was rendered less effective

because of difficulties in accurately parsing sentences; this point is reiterated in Shivakumar

and Garćıa-Molina (1995).

In most cases, word-level granularity is a reasonable compromise between the various

considerations discussed above. While words cannot be extracted from any arbitrary files,

most human-readable documents can be reliably segmented into reasonable word-like units

using a simple tokeniser. Furthermore, while characters are the atomic unit in phonetic-

alphabet languages, it can be argued that words are the functional atoms of a natural-

language document. It is unlikely that some characters in a word are changed between two

co-derived documents without the entire word being changed (an exception to this is the

correction of spelling and typographical errors). The distinction between characters and

words is far less clear in hieroglyphic-alphabet languages such as Chinese. In these cases the

conservative action is probably to use a character-level granularity, but investigation of this

problem is outside the scope of this work.

3.6.3 Chunking in the literature

Having discussed the various options available when choosing how to break a document into

chunks, we now review some of the choices made in the existing literature.

Several previous efforts have made use of byte-level granularity. Both Manber (1994)

and Schleimer et al. (2003) used byte-level granularity with a window-width of 50 bytes.
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Heintze (1996) used a variation on byte-level granularity. As his work focused on working in

noisy environments such as those in which documents are produced using optical character

recognition and Postscript conversion technology, it was found useful to eliminate all vowels

as being significantly error-prone; subsequently, chunks were based by passing a 20-byte

window over the consonants in the document. Heintze estimates that, given typical character

distributions in natural language (or at least English), this corresponds to byte-level chunks

of approximately 30-45 bytes.

The most common choice of granularity was word-level. The chunk size varied signif-

icantly between different groups. In decreasing order of length, the following chunk sizes

were reported in the literature: Broder et al. (1997), 10 words; Hoad and Zobel (2003),

eight words; Fetterly et al. (2003), five words; Pereira Jr. and Ziviani (2003), four words;

Lyon et al. (2001), three words; Clough et al. (2002), one word. In many of these cases the

researchers tried a range of parameters to optimise the effectiveness of their tool. The broad

range of different parameterisations shows that the length of the chunk is not a particularly

significant factor in the performance of a fingerprinting tool, and is dominated by other ef-

fects. It is somewhat surprising, however, that Clough et al. (2002) found single-word chunks

to be most effective, as this reduces the fingerprinting scheme to a simple word-overlap mea-

sure. Clough et al. speculate that this surprising result is perhaps due to domain effects

pertaining to their project, which focused on reuse of newsagency wires by newspapers.

Finkel et al. (2002) used hashed breakpointing with a m parameter of 10, meaning that

the expected chunk length was 10 words.

There have been some attempts to use higher levels of granularity. Shivakumar and

Garćıa-Molina (1998) used line-level granularity and non-overlapping chunks of length two

or four lines. Brin et al. (1995) and Campbell et al. (2000) use sentence-level granularity

and a chunk length of one sentence. Brin et al. noted that correctly parsing sentences was

problematic and occasionally caused failures in the system.

3.6.4 Classification of co-derivatives using chunks

As discussed in Section 3.6, the presence of a common chunk between two documents is good

evidence of co-derivation. The presence of more common chunks between the documents

constitutes stronger evidence of their co-derivation. The issue is, then, how to use the

evidence provided by a chunk index to most effectively classify document pairs as being

co-derivative.
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In general, the data about chunk co-occurrences must be combined in some way to yield

a value that quantifies the degree of text reuse, and thus provides a confidence estimate

regarding the co-derivation status of a pair of documents.

The most common measures used for this task are resemblance and containment (Broder,

1997). Resemblance is a symmetric measure which is maximised when two documents are

identical. It is defined as:

R(S, T ) =
|Ŝ ∩ T̂ |

|Ŝ ∪ T̂ |

where Ŝ is the set of shingles extracted from a document S. Containment is an asymmetric

measure which is maximised when the subject document is entirely reproduced within the

object document; the following computes the containment of S in T :

C(S, T ) =
|Ŝ|

|Ŝ ∪ T̂ |

While resemblance and containment are useful concepts for classifying co-derivation, there

are some issues with these functions. Neither resemblance nor containment are true param-

eterless functions that can be mapped to a unique value because they are dependent on the

parameters used for chunking. Thus, the interpretation of a resemblance or containment

value is dependent on the chunking parameterisation.

Because resemblance and containment range smoothly between 0 and 1, they are fre-

quently interpreted as ‘percentage similarity’ or some similar concept. However, a single edit

to a document will disrupt a number of shingles due to their overlapping nature. Thus, the

reported resemblance values for a pair of documents may be significantly lower than a human

would intuitively expect of a ‘percentage similarity’. Caveat emptor.

Resemblance and containment use only information about the proportion of chunks in a

pair of documents that are shared. They take no consideration of any properties of the chunks

that are used. In ad-hoc information retrieval, making use of both document and collection

statistics for weighting the value of terms is of critical importance to producing a high-quality

ranking. While it can be argued that this is far less important for chunks because their co-

occurrence is unlikely to be coincidental, it may still be worthwhile to incorporate collection

statistics into weighting the value of a chunk. We consider this possibility in Chapter 4.

When using chunks of variable length (as is the case with hashed breakpointing) it may

also be worthwhile to weight the chunks by their length, as it can be claimed that a long

shared chunk provides stronger evidence of co-derivation than a short one.
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3.6.5 Chunk selection heuristics

In order to produce the most sensitive measure, it would be ideal to index all the chunks

in every document. We call this full fingerprinting. In practice, however, full fingerprinting

generally places an unacceptable resource burden in terms of index construction, disk storage,

and search. It is generally accepted that it is necessary to index chunks selectively in order

to improve the performance and scalability of document fingerprinting. The way in which a

subset of document chunks is selected has a significant bearing on the overall performance of

the fingerprinting algorithm. Many heuristics have been conceived and we present a survey

here.

Perhaps the simplest selection heuristic is the random scheme in which chunks are selected

based on the outcome of a Bernoulli trial. The Bernoulli parameter p can be adjusted in order

to control the density of chunks selected. While this scheme has the virtue of simplicity, it

represents a poor return in terms of accuracy for the resources invested. This is because while

we expect that the number of chunks selected is p, the resolution of the scheme is p2. For

example, with p = 0.1 we would expect that approximately one in every ten chunks is selected

for storage. However, given two identical documents of length 100 chunks, we expect that this

selection scheme will only store one chunk that is common to both documents, and there is a

nearly 35% chance that the fingerprints of the documents will have no chunks in common. We

have thus traded a tenfold improvement in space-efficiency for a one-hundredfold reduction

in resolution. This is not an appealing transaction.

Another family of selection heuristics which we may term positional selection heuristics

are similarly simple. Hoad and Zobel (2003) describe several such schemes. One variation

operates by selecting only every nth chunk in the document. Note that when n is equal to

the chunk length, this is functionally equivalent to the non-overlapping chunking strategy

described in Brin et al. (1995), though it occurs at a different stage in the fingerprinting

process. Other positional selection heuristics include such strategies as choosing the first

K chunks in the document and similar variations. One may suspect that this family of

strategies is not very effective — they are extremely sensitive to edits and coarse-grained

reorganisations of the document text — and indeed Hoad and Zobel (2003) find that this is

the case on realistic data collections.

A common feature of the selection heuristics described above that contributes to their

ineffectiveness is that the selection process is entirely independent of the content of the

chunk itself. This leads to the situation where a given chunk is selected in one document
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Figure 3.5: The modulo chunk selection heuristic. Chunks are hashed and all chunks whose

hashes correspond to zero modulo a parameter p are selected for the fingerprint.

but not in another and is the fundamental reason why these heuristics have such undesirable

performance characteristics. We say that a selection heuristic that chooses either all or none

of the instances of a given chunk has the property of synchronisation. Synchronisation is a

desirable property of any selection heuristic because it avoids precisely the sorts of problems

described above. For synchronisation to be achieved the selection heuristic must make its

decision deterministically and be based only on the content of the chunk.

The simplest selection heuristic exhibiting synchronisation is the modulo heuristic (Man-

ber, 1994; Broder, 1997; Broder et al., 1997). This operates by taking a hash of each chunk

and selecting the chunk if the hash is equal to zero modulo a parameter p; this is illustrated

in Figure 3.5. To contrast the performance of this heuristic with the random heuristic, we

set p = 10. As above, we expect that approximately one in ten chunks is selected for storage.

However, for two identical documents of length 100 chunks, we expect an average of ten

common chunks to be selected. More importantly, given a good hash function, we expect

that the probability that these two documents will have no common chunks indexed is less

than 0.003%.

Broder (1997) and Broder et al. (1997) demonstrated analytically that calculating resem-

blance and containment based only on chunks selected by the modulo heuristic constitutes

an unbiased estimate of the true resemblance and containment between two documents. An-

other selection heuristic proposed by Broder (1997) is called the min scheme, in which all

chunks in a document are hashed and the n chunks with the lowest hash values are selected;

see Figure 3.6. Broder proves that this scheme provides an unbiased estimate of resemblance,
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Figure 3.6: The min chunk selection heuristic. Chunks are hashed and the hashes sorted;

those chunks with the lowest hashes are selected for the fingerprint.

though not containment. It is worth noting that the min heuristic does not ensure synchro-

nisation, however. Its main advantage is that it allows the number of chunks selected from

each document to be capped.

Manber (1994) — who originally proposed the modulo heuristic — also suggests a selection

heuristic he calls the anchor scheme. The idea with this heuristic is to provide synchronisation

by having a lexicon of short strings. A chunk is only selected if it has one of the strings in the

lexicon as a prefix. Manber suggests training the lexicon by choosing terms from a collection

that are “quite common but not too common”. The anchor heuristic possesses much of the

character of the modulo scheme in the way chunks are selected by examining them for a

particular feature, but it has several disadvantages. In particular, the domain-independent

character of the modulo scheme is lost, as is its well understood statistical behaviour. For

these reasons, the anchor heuristic is abandoned by Manber in favour of modulo. However,

a similar selection heuristic is used by Heintze (1996); in this case, chunks that begin with a

five-letter sequence that appears infrequently in the document are selected over those with

a more common prefix. Note that this selection heuristic does not exhibit synchronisation,

though Heintze claims good results in practice.

Finkel et al. (2002) describe two elegant selection heuristics based on the variable-length

chunks generated by the hashed breakpoint chunking strategy. In the first of these, the n

chunks closest in length to the median are selected, allowing the number of chunks selected

from a document to be capped. In the second heuristic, chunks are selected if their length is

within a given number of standard deviations from the median. This heuristic is illustrated
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Figure 3.7: The selection scheme of Finkel et al. (2002) for the hashed breakpoint chunking

scheme. All chunks of a length within a given distance of the median chunk-length are selected

for the fingerprint.

in Figure 3.7. Both these heuristics take advantage of the reduced number of chunks returned

by the hashed breakpoint chunking strategy while still forcing chunks to be of a reasonably

uniform length, which can be considered advantageous as chunks can be assumed to be of

approximately equal weight or value.

Finkel et al. (2002) do not explicitly state whether they use document statistics or an-

alytical results for the median and standard deviation values. If the analytical values are

used then the variance-based heuristic does exhibit synchronisation, although the ‘closest n

to median’ scheme does not.

A problem with the synchronised chunk-selection heuristics described above is that while

they guarantee the synchronisation property, they provide no guarantee that a chunk will

be selected in a run of arbitrary length. This is, in a sense, a direct consequence of the

quest to achieve synchronisation. Because the selection of chunks is based solely on the

internal properties of the chunk itself without taking into consideration in any way the

context in which it occurs, the chunk selection heuristic is effectively stateless. Given a well-
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behaved hash function, the distance between adjacent selected chunks follows a geometric

distribution, which is well known as the classic ‘memoryless’ probability distribution. It

is thus an unfortunate property of such heuristics that, no matter how long the match

between a pair of documents, there is a nonzero probability that the match will be overlooked

entirely. In the example above this probability is 0.003%, which is probably acceptable in

most circumstances. However, the real-world parameterisations reported in some papers lead

to more alarming figures.

Using the parameters suggested in Manber (1994) (byte-level granularity; modulo pa-

rameter p = 256), the probability that two documents with a one-kilobyte run of identical

text do not share a single selected chunk is 1.83%. The same value obtains for an identical

run of 100 words and the parameters suggested by Broder et al. (1997). For runs of text

half this length, this probability increases to 13.5%. Such performance is quite likely to be

unacceptable (or at least undesirable) in many application domains.

The winnowing selection heuristic (Schleimer et al., 2003) is designed to provide a guar-

antee by capping the longest common contiguous run of text between two documents before

at least one common chunk is selected in both documents. It does this by maintaining a

fixed length window of the last w chunks. At each increment, the chunk in the window that

has the lowest hash value is marked. All chunks that have been marked at least once are

then selected for the document’s fingerprint; this process is illustrated in Figure 3.8. The

winnowing selection heuristic guarantees that any common contiguous run of length at least

w chunks has at least one common chunk selected. To see how the guarantee is enacted,

consider that a sequence of text of length w will fill the entire window. Thus, because the

winnowing algorithm is deterministic and does not take into account context from outside

the window, the same chunk will be marked and consequently selected from this sequence of

text, no matter where it occurs in a broader context.

Schleimer et al. (2003) define a property of selection algorithms that they call locality.

A local selection heuristic has a fixed-size window of context and has a deterministic func-

tional mapping between any given window and a particular chunk in that window. They

demonstrate that winnowing is a local algorithm and that any local algorithm provides the

guarantee described in the previous paragraph. They also prove a number of properties about

the class of local selection heuristics and show that winnowing compares favourably with the

hypothetical optimal local selection heuristic.

In adhering to the locality property Schleimer et al. have introduced a dependence on
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Figure 3.8: The winnowing chunk selection heuristic. All chunks are hashed; a fixed-length

window is then passed over the hash values and all chunks whose hash is minimal for some

window in which it appears are marked. All marked chunks are selected for the fingerprint.

contextual factors when selecting chunks.4 While this is in a sense the aim of the algorithm,

the dependence on context weakens the synchronisation property of the winnowing algorithm.

Rather than a given chunk either being selected or not selected for all documents in which it

appears, synchronisation is only assured when the local context (the window) is identical. It is

perhaps best to view local selection heuristics as a compromise between full synchronisation

and full contextual awareness. This highlights a fundamental conflict between contextual

chunk selection and synchronisation: pursuing one of these objectives negates the possibility

of achieving the other.

Fetterly et al. (2003) describe an unnamed selection heuristic that we call minimal-chunk

sampling. This takes a fundamentally different approach to the selection of chunks and yields

an ordered fingerprint that can be seen as a vector of separate single-chunk fingerprints.

Minimal-chunk sampling requires the use of a class of hash functions that are able to act as

4This is not true in the degenerate case where the window size w is equal to one. Under these circumstances

winnowing reverts to a full fingerprinting strategy.
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min-wise independent permutations (see Section 2.2).

The algorithm makes use of a set of m hash functions selected at random from a min-

wise independent class of functions. For each of the m hash functions, all the chunks in the

document are hashed and the chunk with the lowest value retained. This results in a vector

of m chunks as the fingerprint for each document.

In each iteration the heuristic is effectively using the min scheme with n = 1. So why

not simply use the min heuristic with n set to the desired value? Fetterly et al. (2003)

present two main reasons. The first of these is that setting n = 1, in combination with the

fact that the hash functions are min-wise independent, provides the heuristic with several

advantageous formal properties. In particular, the probability that a pair of documents

will have the same chunk selected under a particular hash function is precisely equal to the

proportion of common chunks the two documents have. The use of separate hash functions

to select each chunk means that this probability is independent, rendering the calculation of

various tolerances trivial. For example, for two documents sharing 70% of their chunks and

with m = 3, the probability that they will have no common chunks selected can be computed

as (1− 0.7)3 = 0.027 or 2.7%.

This other advantage claimed by Fetterly et al. is computational. Rather than having

to perform a set-overlap operation in order to estimate the resemblance between a pair of

documents given their fingerprint, each chunk in a document need be compared only to its

corresponding chunk in the other document; that is, the fingerprint is ordered. However,

in the context of inverted indexes this is of little benefit, as resemblance is never directly

calculated in this way.

3.7 Deterministic term extraction

Deterministic term extraction algorithms are an alternative approach to the extraction of ro-

bust features for detection of co-derivative documents. Instead of using features derived from

chunks, deterministic term extraction systems extract representative features by heuristically

selecting a subset or several subsets of the terms appearing in each document. The intention

is to choose these subsets in such a way that two unrelated documents will be unlikely to

share them, but that the probability that minor alterations to the document will alter the

set of extracted terms is low.

I-Match (Chowdhury et al., 2002) is a co-derivative document detection system that uses

deterministic term extraction as its basis of operation. In the I-Match system, terms are
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selected by a series of rules governed by collection statistics, in particular inverse document

frequency (IDF). For example, the 50% of terms in the document with the highest IDF

may be chosen, thus screening out all the commonly-occurring terms. The terms extracted

are then sorted and hashed to create a single identifying feature for each document. Two

documents are considered to be ‘near-duplicates’ if they have the same hash. Chowdhury

et al. empirically determined that the most effective heuristics were those that aggressively

pruned out all but the rarest terms in each document. These rare terms can be seen as a

kind of keyword set. While more common words are likely to be functional or generic, it is

conjectured that it is less likely that a document undergoing minor alteration would have

rare — and therefore specific and topical — terms added or removed.

Ilyinski et al. (2002) proposed a very similar system to I-Match. In this approach a

predetermined, ordered lexicon of words (determined from collection statistics) is compared

to each document. A document’s feature vector for a given term in the lexicon is only

set to 1 if the frequency of occurrence of that term in the document exceeds a specified

threshold; otherwise the vector entry is set to 0. The binary string resulting from this process

identifies the document; if two documents share the same vector then they are considered

to be duplicates or near-duplicates. Ilyinski et al. used a lexicon of 2,000 words, resulting

in document vectors 2,000 bits in length. These could be hashed to create a more compact

digest, though the authors did not do this.

Another implementation that has a strong conceptual similarity to I-Match is due to

Cooper et al. (2002), though that investigation was less rigorous in terms of both analysis

and experimentation. In another similar approach, Conrad et al. (2003) used a hash of the

six terms in each document with the highest IDF value as the feature for the detection of

‘identical duplicates’. The findings of these experiments were similar to those of Chowdhury

et al. (2002).

An advantage of deterministic term extraction over chunking is that the features are

global to the document as a whole rather than local to a particular location in the document.

For a chunking-based system to be effective, sufficient chunks must be stored to provide good

coverage of the entire document so that sufficient evidence exists to make a reliable assessment

of co-derivation or near-duplication. This constraint does not hold for deterministic term

extraction systems, and Chowdhury et al. (2002) have reported excellent results for their

I-Match system when compared to chunking-type strategies.

Having only a single representative feature for each document is attractive from a resource-

consumption point-of-view. Not only is the space required by such an approach low, it is
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guaranteed to grow strictly linearly in the number of documents in the collection. Most

importantly, it avoids the computational expense that is incurred when multiple features

must be combined to compute a similarity score; see Section 3.9.4. Despite these advantages,

the observation holds that a single inopportune difference between a pair of documents can

cause the deterministic term extraction system to produce a different feature for each and

thus render the documents completely different from the perspective of the system.

In order to make deterministic term extraction more robust, it has been suggested that

more than one feature be extracted. Pugh and Henzinger (2003) proposed partitioning the

input into r different buckets. This is done by hashing each term, taking its modulo with

respect to r and assigning it to a bucket based on this value. Each of these buckets is then

hashed to form a single feature, thus leading to the extraction of r features.

Kolcz et al. (2004) propose an extended version of I-Match with multiple features. They

note that, by using global collection statistics, I-Match is implicitly creating a lexicon of terms

to be extracted from each document to form the final feature. The proposed extension, lexicon

randomization, takes the original lexicon and produces r new lexicons by leaving out terms

from each of the lexicons with a probability p. Thus, the new lexicons are essentially random

subsets of the original lexicon. Each of these lexicons are then used to induce a separate

feature from the document in the same way as described for the original I-Match (Chowdhury

et al., 2002).

Haveliwala et al. (2000) use locality-sensitive hashing (LSH), first introduced by Indyk

and Motwani (1998), to a similar end. LSH requires the use of a family of hash functions that

are min-wise independent (see Section 2.2). LSH submits each document to m different hash

functions from a min-wise independent family. Under each permutation the lowest term is

retained. All m terms are then concatenated in order to form the LSH-signature. If r features

are desired, Haveliwala et al. propose repeating the process r times.

It is interesting to note that LSH is conceptually similar to the minimal-chunk sampling

scheme proposed by Fetterly et al. (2003) except that instead of selecting chunks based on

the output of a battery of min-wise independent hash functions, individual terms are chosen

and then concatenated to form a single feature. This close methodological analogy should

not disguise the fundamental fact that LSH extracts a global feature or set of global features,

while the chunking heuristic of Fetterly et al. generates a set of local features much like any

other chunking technique.

Both Pugh and Henzinger (2003) and Kolcz et al. (2004) analytically explore the degree

to which the robustness of multiple-feature fingerprints is superior under minor edits when
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compared to a single-feature fingerprint and show that there is a clear advantage. However,

analysis of the increase in false positives due to the multiple features is absent, though Kolcz

et al. (2004) report that in empirical studies false positives did not present a problem.

Despite the relatively large number of papers listed above that make use of deterministic

term extraction techniques, it is notable that there is very little in the way of a rigorous em-

pirical analysis of their overall effectiveness at identifying near-duplicates or co-derivatives.

Chowdhury et al. (2002) analyse the duplicate-detection properties of I-Match, but use

machine-generated permutations of seed documents for testing. In their results, I-Match

significantly outperforms shingling and super-shingling techniques. On average, over a set of

ten query documents, the best parameterisation of I-Match identified 90.0% of the machine-

generated co-derivatives, compared to 30.9% for shingling and 16.4% for super-shingling.

It is, however, unclear whether the results observed on machine-generated co-derivatives

would transfer to actual co-derivatives in document collections. The way in which the artifi-

cial co-derivatives were created — which was by point mutation, rather than block copying

— seems particularly disruptive to chunk-based techniques. It is also unclear whether the

shingling and super-shingling configuations tested represented good parameter choices for

these techniques.

Kolcz et al. (2004) evaluate the performance of their deterministic term extraction tech-

nique by considering all document-pairs with a cosine score above 0.9 to be near-duplicates.

Recall values were approximately in the range of 0.45 to 0.65. While this evaluation shows

the value of multiple-feature fingerprints, it is difficult to determine — given the arbitrary

standard for comparison — whether determinstic term extraction techniques as a whole are

effective at detecting co-derivatives.

3.8 Efficient feature storage

The features extracted by the fingerprinting algorithms discussed in the previous sections

consist of either strings in the case of chunking, or sets of strings in the case of determin-

istic term extraction. With the typical parameterisations discussed in Section 3.6.3, the

representation of a chunk will consume around 50 bytes of memory. With deterministic

term extraction, a feature will typically be even larger (though fewer features are usually

extracted). Storage of features thus exacts a substantial resource cost.

Except in the case of some specific applications, we are not interested in the actual

content of a feature, but simply in the fact that a pair of documents share that feature. The
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observation can thus be made that the exact feature need not be stored, but only some token

that represents the feature, so that documents sharing a feature can be identified. To this

end, nearly all fingerprinting techniques in the literature do not store the feature itself, but

rather a hash of the feature. In this way, the cost of storing a feature can be reduced to a

modest fixed size of perhaps four or eight bytes.

Hashing can of course lead to collisions, in which two differing inputs are mapped to the

same hash output. In the context of fingerprinting, this means that a pair documents can be

erroneously reported as sharing a feature that they do not in fact share. This increases the

risk of false positives, in which two documents that are not co-derived are classified as being

co-derived. However, in the generally sparse space occupied by the strings, the rate of error

is reasonable. For a hash of size d and a collection from which n unique chunks are obtained,

the expected number of collisions is given by:

E(n; d) = n− d + d

(

d

d− 1

)n

In the case of a 32-bit hash, we expect that for a set of 100,000 unique chunks, there will

be only 1.16 collisions. In the context of a technique that is heuristic and thus already

reasonably noisy, the introduction of this small additional level of uncertainty is unlikely to

have a noticeable impact. If this is of concern, the use of a larger hash exponentially decreases

the probability of collision, such that a 64-bit hash is likely to be virtually collision-free for

any collection of feasible size.

The further observation can be made that in the construction of the final inverted index,

not only can the features themselves be omitted, but so can their representative hashes. The

co-derivative discovery process relies solely on the co-occurrence data encapsulated in the

postings lists, without any reference to the feature itself. Thus, once intermediate structures

have been merged, all feature identifiers may be discarded, yielding a further resource saving.

3.9 Efficiency considerations for the discovery problem

When combination-of-evidence scoring techniques are used it is necessary to perform an

aggregation process such as the one described in Section 3.4. As collection sizes grow, this

can become problematic from the perspective of resource consumption. In particular, the

expansion of postings lists into document-pair tokens produces a number of tokens quadratic

in the length of the postings list. For large collections some postings lists can easily contain

thousands of entries, leading to the creation of millions of document-pair tokens from a single
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list. This is in general an unacceptable burden. Another problem is noise: in large collections

millions of document pairs may each contribute a few tokens but still be well below the scoring

threshold. This can cause a significant increase in processing load from the large volume of

uninteresting document-pair tokens.

3.9.1 Chunk stopping

One simple solution to the problem of quadratic expansion is due to Broder et al. (1997).

When a particularly long postings list is encountered it is simply ignored; Broder et al. use

100 entries as the threshold for ignoring a list. This is somewhat analogous to the process of

stopping in query-based information retrieval (Salton and McGill, 1986), in which common

words are not processed in order to make the search process more efficient. We therefore

refer to this technique as stopping in the context of document fingerprinting. In the case

of the discovery problem the resource saving as a result of stopping is even more significant

because of the quadratic, rather than linear, asymptotic cost in the length of the postings

list.

Of course, neglecting to process certain postings lists introduces an element of lossiness

to the fingerprinting process. In many collections most of the long postings lists are for low-

information features; some examples with chunk-based features are a portion of boilerplate

copyright text in a newswire collection, part of the GNU Public License (GPL) in a collection

of Unix manual pages, or HTTP header information in a collection of web documents. Such

entries are conceptually similar to stopwords: co-occurrence of such features between two

documents is a poor discriminator of co-derivation. However, it is important to be aware

that aggressive pruning of some features can lead to a loss in fidelity of similarity scoring.

For example, two identical manual pages, 20% of which consist of GPL text that has been

stopped, will only report as having 80% resemblance rather than the correct figure of 100%.

A more significant problem can occur in loosely curated collections such as crawls of

documents from the web. Such collections can often contain large groups of identical or

near-identical documents, caused by factors such as mirroring, aliasing, or crawler failure. If

the size of a particular group of near-identical documents is larger than the length threshold

above which postings lists are stopped then all features extracted from these documents will

be stopped. We examine this difficult problem further in Chapter 4.
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3.9.2 Coarse counting

The combination-of-evidence scoring process is an example of an iceberg query, a type of

aggregate query in which only a small proportion of attribute-combinations within a large

space exceed the threshold for inclusion (Fang et al., 1998). Iceberg queries are common in

data mining applications in which trends or correlations are sought from within large volumes

of raw data, for example finding all combinations of products that have been sold together

more than a specified number of times in the sales log of a supermarket.

Fang et al. (1998) proposed various techniques and heuristics that would allow iceberg

queries to be executed faster or with lower resource consumption. One of these techniques,

coarse counting, takes advantage of the fact that in an iceberg query, most of the accumulators

that are initialised are for object combinations that occur very rarely and thus will not exceed

the aggregate threshold. If it can be determined which of these accumulators are likely never

to be needed then a significant resource saving can be realised.

The coarse counting technique uses a preprocessing stage in which a fixed-size hashtable

of accumulators is used. During the preprocessing stage, each element is hashed and the

accumulator corresponding to its hash value is incremented by the weight of that element.

There is no attempt to resolve collisions. At the end of the preprocessing phase, a bitmap5

is used to record which accumulators in the hashtable have exceeded the threshold value and

the memory from the hashtable is reclaimed. At this point, the standard aggregation process

takes place. However, if the hash of an element corresponds to an accumulator with a value

below the threshold value, no accumulator is initialised for that combination of objects. If

the initial hashtable of accumulators is sufficiently large, most of the accumulators that will

not realise a sufficient aggregate value to exceed the threshold will be ignored, resulting in a

significant memory saving.

Note that coarse counting does not lead to false negatives, so it is not a lossy technique.

Note also that false positives do not alter the final outcome of the co-derivative discovery

process. An increasing rate of false positives leads to an increase in the amount of memory

used. The worst case is simply that the time used for the coarse counting stage is wasted; it

is never the case that coarse counting degrades result accuracy or leads to greater memory

consumption (apart from the bitmap) than if it had not been used.

Coarse counting was used for the discovery problem by Shivakumar and Garćıa-Molina

5A bitmap is simply a vector of bits, each of which represent a Boolean value for a particular index. They

consume far less memory than a standard array as only one bit is required for each entry.
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(1998). Each document-pair token extracted from the inverted index was hashed and used to

update the corresponding accumulator as described above. After the preprocessing run was

finished, another pass through the index was conducted and accumulators only initialised for

document-pair tokens if the corresponding entry in the bitmap indicated that the pair may

exceed the threshold. Shivakumar and Garćıa-Molina did not quantify the resource saving

yielded by the coarse counting approach.

3.9.3 Assumption of transitivity

One of the factors that contributes to the difficulty of the discovery problem is the fact that

the co-derivation relationship is not transitive. Thus, a fingerprinting system must separately

track the status of every document-pair separately. The problem would be much easier if the

relationship were transitive because the discovery problem would be reduced to a clustering

of documents into transitively-closed subgraphs of the relationship graph. The grouping of

documents into ‘co-derivative clusters’ also holds a great deal of intuitive appeal, as each

document in a collection is only a member of a single cluster.

Broder et al. (1997) note the lack of transitivity of the resemblance relation, but then

proceed to use a union-find structure to aggregate clusters as if the relation were transitive.

In this case, fidelity has been sacrificed for the sake of a faster and more efficient algorithm.

Fetterly et al. (2003) similarly neglect the lack of transitivity of the resemblance property.

Cho et al. (2000) also choose to consider ‘document similarity’ to be a transitive relation,

though they explicitly discuss the issue and choose to take this path “mainly because it

significantly reduces the cost of computing similarity”.

Several of the deterministic term extraction algorithms described in Section 3.7 only

extract a single representative feature for each algorithm. Extracting only a single feature

from each document implicitly makes the assumption of transitivity. If document A has

the same feature as both documents B and C then, by definition, B and C also have the

same feature and thus are considered near-duplicates. This property amounts to proof that

such single-feature systems lack the sensitivity to capture the full complexity of co-derivation

relationships. This is true no matter the richness or sophistication of such a feature.

3.9.4 Non-aggregative scoring

An alternative approach to addressing the challenges engendered by combination-of-evidence

scoring is to avoid the problem entirely by not combining evidence. This can be achieved by
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either recording only a single feature for each document, or by setting a threshold of a single

common feature for a pair of documents to be considered co-derived.

When a single feature represents each document, there is no need to perform quadratic

expansions of postings lists or to maintain a large number of accumulators. All that is

needed is for the list of features to be sorted and agglomerated into clusters of near-duplicate

documents. When a document produces multiple features, the list of document-pair tokens

needs to be recorded, but no corresponding score needs to be kept. This saving is significant,

but not overwhelming. Typically such approaches are combined with the assumption of

transitivity (see Section 3.9.3) so an efficient structure such as a union-find can be used.

As discussed in the Section 3.9.3, several of the deterministic term extraction algorithms

produce only a single representative feature. The scoring for such approaches is inevitably

non-aggregative. The remainder of the deterministic term extraction approached surveyed

in Section 3.7 have a single feature-scoring threshold. Thus, these techniques are typically

non-aggregative in practice.

Chunk-based approaches have typically used aggregative scoring as a way to estimate the

resemblance between two documents. This is necessary because chunks are local features

and do not on their own provide sufficient evidence of co-derivation. Nonetheless, several

chunk-based approaches for non-aggregative scoring have been proposed. These typically

work by pre-aggregating evidence into a single feature.

One such approach, super-shingling was proposed by Broder et al. (1997). With super-

shingling, chunks are selected using a heuristic as described in Section 3.6.5. However, instead

of indexing the chunks directly, the set of hashes of the selected chunks for each document is

sorted to form a sort of ‘meta-document’. This sequence of hashes is then itself chunked to

return a set of super-shingles, which together constitute the document fingerprint. Broder

et al. argue that any pair of documents that possess a common super-shingle must share a

sequence of common shingles, suggesting with a high probability that the two documents are

co-derived.

A significant flaw of super-shingling is that the ordering imposed on the ‘meta-document’

by sorting the chunk hashes is largely arbitrary. Two documents will only share a super-

shingle if they share a sequence of common shingles in the sorted meta-document, but this

sequentiality has no significance. If the common chunks for a pair of documents are inter-

spersed with chunks that only occur in one or other of the documents then the two will not

have any common super-shingles. The rate of false negatives was not analysed by Broder

et al. (1997).
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By using the minimal-chunk sampling heuristic to obtain an ordered fingerprint, Fetterly

et al. (2003) are able to index only non-overlapping super-shingles. In the paper they extract

6 non-overlapping super-shingles of length 14 from a fingerprint of 84 chunks. This economy is

not possible with super-shingling as described in Broder et al. (1998) because a small number

of insertions into the fingerprint will cause two otherwise highly similar documents to have

no common super-shingles. By contrast, the ordered nature of the fingerprint generated

by minimal-chunk sampling means that small differences between two documents will only

corrupt some of the super-shingles, without affecting the alignment between the remaining

chunks in the fingerprint.

Super-shingling does not give much control as to the threshold at which documents should

be considered co-derivatives. Figure 3.9 shows the probability that a pair of documents with

a given resemblance will have at least one common super-shingle for the parameters described

in Fetterly et al. (2003). The shaded areas below and above the line correspond to areas of

false positives and false negatives respectively, given a resemblance threshold of 0.85. Ideally,

such a graph would be a perfect step function with the transition at the desired threshold

in order to eliminate both false positives and false negatives. The gentleness of the curve in

Figure 3.9 is a direct result of the significant lossiness of the super-shingling technique.

Increasing the threshold of super-shingles to a higher value than one has the effect of

making the transition in the graph steeper while at the same time moving the transition

point to a higher value, thus reducing the level of classification error. This is illustrated in

Figure 3.10. This makes it quite tempting to increase the common super-shingle threshold in

order to get more trustworthy results. The only problem is, of course, that super-shingling

was conceived of in the first place to avoid the combination-of-evidence phase of the discovery

process. Increasing the threshold to any value greater than one negates this advantage.

The solution to this dilemma proposed by Fetterly et al. was to add a further stage to the

chunk aggregation process, creating features known as megashingles. With megashingling,

the set of super-shingles is exhaustively combined to yield every possible combination of a

certain number of super-shingles. The example given in Fetterly et al. (2003) is of six super-

shingles being combined into sets of two, yielding 6C2 = 15 super-shingle pairs, each of which

is then hashed to form a single megashingle. It is apparent that the probability of a single

megashingle matching between a pair of documents is the same as that of a match between

any two of the original super-shingles.

Megashingling pre-aggregates evidence to negate the need for expensive combination-of-

evidence techniques when solving the discovery problem. The tradeoff is clear: an increase
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Figure 3.9: The probability that a pair of documents with a given resemblance will have at

least one common super-shingle for the parameters used in Fetterly et al. (2003). The shaded

area below the curve corresponds to false positives, while the shaded area below the graph

corresponds to false negatives.

in index size (in the case above, storing 15 megashingles instead of 6 super-shingles) in

return for a potentially significant increase in processing speed and a reduction in memory

requirements. Note that megashingling is only feasible for fairly small combinatorial spaces.

As an example, increasing the number of super-shingles to 15 and the evidence threshold to

4 super-shingles would lead to 15C4 = 1, 365 megashingles for each document. Clearly, this

is a far less appealing proposition.

3.10 Summary

In this chapter, we have surveyed the three techniques commonly used for the detection of

co-derivation between documents.

Approximate string matching techniques for computation of metrics such as the Leven-

shtein distance are one possible approach for predicting whether a pair of documents are

co-derived, with the intuition being that a shorter distance corresponds to two documents

containing less divergent text. While some such techniques are certainly capable of reason-

able effectiveness at this task, their computational cost tends to be prohibitive for use on

larger collections.
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Figure 3.10: The probability that a pair of documents with a given resemblance will have at

least a certain number of common super-shingles for the parameters used in Fetterly et al.

(2003).

Term-vector based techniques measure a document-pair’s similarity based on the level of

correspondence between individual terms in the documents. While the term-vector approach

draws inspiration from the vector-space model of information retrieval, scoring formulae

have been modified to provide greater accuracy for co-derivative detection. The term-vector

paradigm provides good efficiency for the search problem, but not for the discovery problem.

Document fingerprinting is the most practical approach for the discovery problem. It is

based on the extraction of features from documents that are believed to be likely to co-occur

between co-derived documents but unlikely to co-occur between two unrelated documents.

The co-occurrence of such features between documents can then be used to accurately predict

whether the documents are co-derived.

There are two main approaches to extracting features for document fingerprinting. The

first of these, chunking, operates by breaking documents up into sequences of contiguous text

called chunks. If sufficient chunks co-occur between two documents, there is strong evidence

of co-derivation. The second technique, deterministic term extraction, works by choosing

only certain terms in a document and then combining these into a single feature. Two co-

derived documents are likely to produce the same feature if the terms are carefully selected,

whereas the probability of two unrelated documents producing the same feature are quite

low.
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The choice of fingerprinting technique is a matter of compromise, and of making appropri-

ate choices based on the resources available and the proposed application. Algorithms based

on deterministic term extraction tend to require fewer resources but provide little in terms of

either practical or theoretical assurances, though limited experimentation suggests they can

be effective. Techniques based on chunking operate in a more predictable manner, but tend

to require significant resources. Thus, chunking techniques tend to use a selection heuristic

to reduce the size of the index. This introduces an adjustable level of lossiness to the pro-

cess, and requires a careful tradeoff between accuracy and efficiency. Many commonly-used

selection heuristics provide no worst-case bounds of any sort.

The index processing required for the discovery problem again requires the making of com-

promises. Non-aggregative discovery techniques are crude but efficient, whereas aggregative

scoring techniques provide subtle levels of differentiation but can encounter serious computa-

tional bottlenecks. In order to overcome these bottlenecks, various measures such as coarse

counting, chunk stopping and assumption of transitivity can be used. The latter two of these

once again reduce the fidelity of the algorithm. At present there is no entirely satisfactory

solution to this problem.

In the next chapter, we present our original contributions to document fingerprinting.



Chapter 4

Efficient and effective document

fingerprinting

This chapter contains material that first appeared in Bernstein and Zobel (2004) and Bern-

stein and Zobel (2006).

Chunk-based fingerprinting strategies are an appealing choice for discovering co-derivative

documents in a large collection. Furthermore, chunk-based fingerprinting techniques that use

shingles behave in a predictable way with reference to intuitive measures such as resemblance

and containment, and maintain a degree of robustness in the face of attacks. These same

claims cannot be made for deterministic term-extraction algorithms, that — while empirically

promising — can offer no guarantees in terms of performance.

If all chunks in a collection are processed — a strategy known as full fingerprinting —

then resemblance and containment values for document-pairs can be computed directly.

However, full fingerprinting is a resource-intensive strategy, and is rarely practical for

large volumes of data. It therefore becomes necessary to use chunk-selection heuristics in

order to keep storage requirements at a reasonable level (see Section 3.6.5). Unfortunately,

current chunk selection heuristics introduce lossiness to the fingerprinting process. Some se-

lection heuristics, notably modulo, allow for unbiased estimates of resemblance and contain-

ment; however, the variance of these estimates can be high. There is a significant possibility

that two documents sharing a large portion of text are passed over entirely, as discussed in

Section 3.6.5.

92
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In this chapter we introduce spex, an efficient lossless chunk-selection algorithm. Spex

allows a system to precisely compute the resemblance and containment of all documents pairs

in a collection, thus providing functional equivalence to full fingerprinting, but at a fraction of

the resource cost for most collections. The chapter is organised as follows: in Section 4.2, we

discuss the operation of the spex algorithm; in Section 4.3, we describe our deco software for

document fingerprinting, which implements spex; in Section 4.4 we describe our experimental

methodology; and in the followin sections we present an empirical analysis of the performance

of the algorithm in practice. Our experimental results demonstrate that the spex algorithm

allows for sensitive detection of co-derivative documents, while in typical cases consuming

a modest quantity of resources. Experiments with the highly redundant GOV2 collection

suggests that spex works best on collections with only a modest degree of duplication.

4.1 Lossless chunk selection

How is it even possible for chunks to be selectively retained in a document’s fingerprint, and

yet for this process to be lossless in terms of the ability to detect co-derivatives? We make

the observation that singleton chunks — those that occur only once in the entire collection

— make no contribution to the detection of co-derivatives. Any technique for detecting co-

derivatives based on chunks operates by calculating some function of chunk co-occurrence.

By definition, a singleton chunk cannot co-occur, and thus makes no contribution to any of

the metrics for assessing the likelihood of co-derivation between a pair of documents.

In order to get a sense of the quantity of resources that are wasted on processing singleton

chunks, we analysed the LATimes newswire collection (see Section 4.4). Out of a total of

67.8 million chunks of length 8, only 2.8 million were in fact instances of duplicate chunks,

which is less than 4.5% of the overall collection. The number of distinct duplicated chunks

is 0.9 million, or less than 1.5% of the collection total. As can be inferred from these figures,

the inability of current chunk-selection heuristics to identify singleton chunks leads to an

enormous amount of waste on many typical document collections.

A selection heuristic that retains only non-singleton chunks would provide functional

equivalence to full fingerprinting, but at a fraction of the resource cost for most collections.

The challenge is to find a way of efficiently and scalably discriminating between duplicate

and singleton chunks.
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4.1.1 Algorithms for lossless chunk selection

The simplest way to eliminate singleton chunks from a chunk index is as a postprocessing

step: first perform full fingerprinting, then scan through the resulting index to eliminate

all entries that contain just one posting. The problem with this technique is that although

the resulting index is minimal, the peak resource requirement is as high as it is for full

fingerprinting. Clearly, we need a method that is able to identify duplicate chunks at an

earlier stage in the fingerprinting process.

Hierarchical dictionary-based compression techniques such as sequitur (Nevill-Manning

and Witten, 1997) and re-pair (Larsson and Moffat, 2000) are primarily designed to elimi-

nate redundancy by replacing strings that occur more than once in the data with a reference

to an entry in a ruleset. Thus, passages of text that occur multiple times in the collection are

identified as part of the compression process. This has been used as the basis for phrase-based

collection browsing tools such as phind (Nevill-Manning et al., 1997) and re-store (Moffat

and Wan, 2001). However, the use of these techniques in most situations is ruled out by their

high memory requirements. For example, the phind technique needs about twice the mem-

ory of the total size of the collection being browsed (Nevill-Manning et al., 1997). To keep

memory use at reasonable levels, the input data is generally segmented and compressed block

by block. However, this negates the ability of the algorithm to identify globally duplicated

passages. Thus, such algorithms are not useful for large collections.

Suffix structures can also be used for duplicate-chunk identification, and are used for sim-

ilar tasks in computational biology (Gusfield, 1997). However, as discussed in Section 2.6.1,

suffix structures are resource-intensive and thus infeasible for larger collections. We therefore

seek a more efficient and scalable technique for this task.

4.2 The spex algorithm for lossless chunk selection

Our contribution in this work is the spex algorithm, a resource-efficient technique for lossless

chunk selection. The spex algorithm is a novel hash-based method for the identification of

singleton chunks in a collection and has far more modest and flexible memory requirements

than the algorithms discussed in Section 4.1. It is thus the first selection algorithm that is able

to provide lossless chunk selection within large collections. In the case of large collections,

the memory needs of spex are usually many times smaller than the size of the collection.

Spex identifies repetition by use of repeated passes over the data, and thus is slower than

some of the alternatives, but is, as we show, more accurate for a given space overhead.
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The fundamental observation behind the operation of spex is that, if any subchunks of a

chunk are singletons, then the chunk as a whole must too be singleton. Thus, we only need

to demonstrate the uniqueness of one subchunk in order to discount the possibility that a

chunk as a whole is non-unique. For example, if the chunk ‘quick brown’ occurs only once in

the collection, there is no possibility that the chunk ‘quick brown fox’ is repeated. Spex uses

an iterated hashing approach to discard unique chunks and leave only those that are likely

to be duplicates. This iterative approach shares a similarity of approach with data mining

algorithms such as Apriori (Agrawal and Srikant, 1994) that find various data relationships

by iteratively refining from more general relationships.

Our iterated approach begins with subchunks of length one — that is, individual terms.

The collection is linearly parsed and each word is added to a large hash-based accumulator.

The hash-based accumulator (or hashcounter) is simply a large array of counters. When

an item is added to the hashcounter, the location in the table corresponding to the hash of

the item is incremented. Two particulars are noteworthy: first, collisions are not resolved,

guaranteeing constant-time performance at the expense of the possibility of false positives;

second, the counters need take on only three distinct values (zero, one, and ‘greater than one’),

This means that a large hashcounter can fit into a relatively modest quantity of memory.

Hashcounters are closely related to Bloom filters, which are data structures for determining

the set membership of an object (Bloom, 1970). In both cases hashtables are used in such a

way as to allow the possibility of false positives, but not of false negatives.

The number of words in a collection of documents is in most cases relatively modest

relative to the overall size of the collection. The highly skew distribution of word occurrence

is a well-studied phenomenon (Witten and Bell, 1990). This, combined with the large size

of the hashcounter, means that the number of collisions at this stage will be minimal. After

the hashcounter has been fully populated, querying it on a particular word in the collection

will return either one or ‘greater than one’. If the returned count is one, then that word is

unique in the collection. If it is greater than one, then the word is assumed to occur multiple

times, though false positives are possible due to hashing collisions.

Once the initial hashcounter for chunks of length one has been fully populated from the

collection, a new hashcounter is initialised. A second pass of the collection begins, this time

sequentially extracting all two-word chunks. Rather than simply inserting each chunk into

the new hashcounter, it is first broken down into two subchunks of size one. Each of these

subchunks is used as a query against the first hashcounter. If either of the words is marked

as unique in the collection, then the chunk is not inserted into the second hashcounter: as
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Figure 4.1: The process of inserting a new chunk into the hashcounter in spex. The chunk

“the quick brown” is divided into two subchunks: “the quick” and “quick brown” They are

each hashed into the hashcounter for length c − 1; in this case, two. If the count for both

subchunks is greater than one, the full chunk is hashed and the counter at that location in the

new hashcounter is incremented.

one of its subcomponents is a singleton, it too must be a singleton.

After the second pass, the process is repeated for chunks of length three. Each of these

chunks is broken into two subchunks of length two, which are queried against the hashcounter

for chunks of this length. Note that the memory for the hashcounter for subchunks of length

one can now be reclaimed, as the information it contains is no longer needed. At any stage

there need be no more than two hashcounters in memory: that for the current subchunk

length c and that for the previous subchunk length c− 1. Figure 4.1 provides an illustration

of one iteration of the spex process.

The spex process is iterated until we reach the desired chunk length; we use a length of

eight terms. When the desired length is reached, an inverted index of non-singleton chunks

can be created by only indexing chunks whose subchunks all hash to fields that indicate

multiple hits. The entire spex process is described more formally in Algorithm 1.

In each iteration of the spex algorithm, the chunks become longer, and thus the cost

of hashing each chunk grows. However, a larger factor in determining execution time is the

number of chunks that must be hashed. We have empirically verified that the execution time

of each iteration closely mirrors the number of hashcounter insertions made.

Figure 4.2 illustrates how spex works. The figure tracks the occupancy of the hashcounter

after each pass of the algorithm for the all-newswire (see Section 4.4) collection. The solid line
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Algorithm 1 The spex algorithm

for chunkLength ←− 1 to finalLength

foreach sequence in the collection

foreach chunk of length chunkLength in sequence

if chunkLength = 1 then

increment lookup[chunk]

else

subchunk1 ←− chunk prefix of length chunkLength - 1

subchunk2 ←− chunk suffix of length chunkLength - 1

if lookup[subchunk1] = 2+ and lookup[subchunk2] = 2+ then

increment lookup[chunk]

shows the number of fields in the hashcounter that recorded just a single hit (corresponding

to unique chunks), whereas the dashed line shows the number of fields in the hashcounter

that recorded multiple hits (non-unique chunks or hash collisions). As discussed earlier,

the number of single-word chunks (both unique and duplicated) is low. This means that

spex does not yet have much discriminative power. Only chunks that contain a singleton

subchunk are discarded by the algorithm and there are not many singleton subchunks at

this stage. However, as the number of singleton chunks grows in subsequent passes, more

can be discounted. The compounding effect of discounting chunks at each pass means that

eventually the overall number of occupied hashcounter entries begins to drop dramatically,

keeping the hashcounter from becoming flooded.

Figure 4.3 shows what happens if the spex process of stepwise refinement is not used and

all chunks are inserted into the hashcounter at each stage. At the first couple of passes, the

lines track quite closely. However, at chunk size three, they begin to diverge dramatically.

Where spex is not used, the unique chunks are not weeded out. They therefore begin to

occupy more and more space in the hashcounter, thus increasing the possibility of collisions.

At a chunk size of seven, the hashcounter where spex was not used shows a significantly

higher number of fields that have recorded more than one hit. As the number of actual

non-singleton chunks remains the same, these extra fields are false positives created by hash

collisions. This directly leads to the creation of a larger index.
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Figure 4.2: Number of hashcounter entries containing single and multiple hits at each itera-

tion for the all-newswire collection (226 elements total).

4.3 The deco package

Our deco system for co-derivative detection is a high-performance software package that

combines the spex fingerprinting algorithm with advanced indexing techniques, a modular

design, sophisticated optimisations, and other previous innovations in the field such as chunk

stopping and coarse counting to improve the performance of relationship-graph generation

(see Section 3.9).

Deco operates in two phases: index construction and relationship graph generation.

4.3.1 Index Construction

Deco uses a multi-stage ‘selection pipeline’ during index construction in order to minimise

index size and to allow the user to adjust the tradeoffs between build time, size, and reliabil-

ity. The first stage is to cluster documents that are exact duplicates of each other. These are

identified by taking one hash of each entire document and then sorting these hashes. Docu-

ments with the same hash are considered to be identical, and only one of these documents

is indexed. All documents that are co-derived with the ‘representative’ document are also

flagged as co-derived with its duplicates. This exact technique was used by Broder et al.
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Figure 4.3: Number of hashcounter entries containing single and multiple hits at each iter-

ation for the LATimes collection with and without spex iterative refinement (223 elements

total).

(1997). In order to minimise the possibility of collision, we use the reasonably secure MD5

message digest algorithm (Rivest, 1992), which produces hash-keys 128 bits in length.

Deco currently supports the spex and modulo (see Section 3.6.5) selection schemes,

which can be used individually or together in the selection pipeline. By default, spex is

used. However, it can be combined with the modulo heuristic so that a chunk is only indexed

if it is selected by both algorithms. This allows for the creation of compact indexes that still

support identification of co-derivatives. The selection pipeline code was written in such a way

as to facilitate the creation of additional ‘plug-ins’ for the pipeline. For example, one could

easily write a new selection filter for the anchor heuristic, or a filter that selected chunks

only if they contained certain words.

4.3.2 Relationship Graph Generation

Several parameters must be specified to guide the process of generating a relationship graph

from the common-chunk inverted index generated by the spex process. The most impor-

tant of these are the scoring function and the inclusion threshold. Deco calculates the

co-derivation score for a pair of documents u and v using one of the following formulae:
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S1(u, v) =
∑

c∈u∧c∈v 1

S2(u, v) =
∑

c∈u∧c∈v 1/ min ū, v̄

S3(u, v) =
∑

c∈u∧c∈v 1/ mean ū, v̄

S4(u, v) =
∑

c∈u∧c∈v
1/fc

mean ū,v̄

where ū is the length (in words) of a document u, and fc is the number of collection documents

a given chunk c appears in. Function S1 above simply counts the number of chunks common

to the two documents. Functions S2 and S3 attempt to normalise the score relative to the

size of the documents, so that larger documents do not dominate smaller ones in the results.

They are similar to the resemblance measure of Broder (1997) but are modified for more

efficient computation. Function S4 gives greater weight to chunks that are rare across the

collection. These scoring functions are all simple heuristics. Further refinement of these

functions and the possible use of statistical models is a topic for future research.

The inclusion threshold is the minimum value of S(u, v) for which an edge between u and

v will be included in the relationship graph. We wish to set the threshold such that pairs

of co-derived documents score above the threshold while pairs that are not co-derived score

below the threshold.

4.3.3 Implementation considerations

During the course of the implementation of the deco system, a number of optimisations

were made, the more noteworthy of which are described in this section.

Text tokenisation

The deco package performs fingerprinting with word-level granularity. Thus, the incoming

text stream must be tokenised into individual word-tokens before it can be processed. This

process is reasonably computationally expensive. Furthermore, certain elements of the stream

— for example, most HTML tags — may be ignored by the fingerprinting algorithm. Because

the spex algorithm operates by performing multiple linear passes over the text collection,

the collection is tokenised multiple times, leading to significant inefficiencies.

Deco overcomes this inefficiency by performing an initial tokenising pass over the plain-

text collection, and storing the resulting stream of token IDs. As each token is returned by

the parser, it is assigned a four-byte ordinal token ID. Thus, the first token in the stream will

have ID 0, the next will have ID 1 and so on. A hashtable is maintained, so that if a token

has appeared earlier in the stream then it will be associated with the same ID. Thus, each
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token in the stream has a one-to-one correspondence with a numeric token ID. For example,

the following text:

Peter Piper picked a peck of pickled peppers

A peck of pickled peppers Peter Piper Picked

would represented as the following sequence of preparsed token IDs (assuming case-folding):

1 2 3 4 5 6 7 8

4 5 6 7 8 1 2 3

Once deco has built the preparsed token file, all further processing (including spex) proceeds

on this file rather than on the plaintext document collection. It should be apparent from

the above example that if a pair of documents share chunks in the plaintext representation,

they will likewise share chunks in the preparsed representation, and — in general — vice

versa. This optimisation thus has no effect on the final output of the system. Note that

it is possible to save one pass over the preparsed token file by piping the output of the

tokenisation process directly to the input for the spex algorithm. However, this requires

that the hashtable for building the token file be in memory contempereaneously with the

hashcounters for spex. Depending on the available memory resources, this may or may not

be a worthwhile tradeoff. We have not implemented this optimisation.

Text preparsing leads to speed improvements for two reasons. First, by only parsing the

collection once, significant computational resources are saved; reading a stream of preparsed

ordinal tokens is a far more efficient process than repeatedly parsing the original text. Sec-

ond, the collection as represented by the preparsed token sequence is generally smaller than

the plaintext representation of the same collection, for the following reasons: the four-byte

ordinal tokens are typically somewhat smaller than the terms they replace; whitespace is

not necessary; and ignored objects such as HTML tags may be omitted from the file. As

disk read operations make a significant contribution to the overall execution time of deco,

a smaller collection leads directly to a speed improvement.

Text preparsing also has two potential drawbacks. The first of these is that the actual text

of chunks that are shared between a pair of documents is lost. All that is left are sequences of

token IDs. However, it is unlikely that the actual text of the chunks is a particularly valuable

resource. Apart from debugging, the only use for these values is for visually presenting the

overlap between documents to a user. With positional data in the index, however, this can
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be efficiently recovered directly from the documents. The second drawback is the possibility

of collision due to overflow. If the number of unique tokens in a collection exceeds the bounds

of the primitive used for storing the token ID — 232 in the case of a four-byte integer —

then some tokens will end up mapping to the same ID due to overflow, leading to false

positives. The response to this is that as we are comparing sequences of tokens, the chance

of a collision with chunks of a reasonable length in a space this large is exceedingly slim.

Given that fingerprinting is not a precise science, this should not cause undue concern.

Hashcounter packing

Each entry in the hashcounters used for the spex algorithm must be able to distinguish

between three values: zero, one, or ‘greater than one’. Thus, entries in the hashcounter need

only be two bits wide in order to store their values. This allows us to create hashcounters

with a large number of entries within main memory.

However, we can do even better than this. Consider that one of the four states allowed

by a two-bit field goes unused in the above implementation. From an information-theoretic

perspective, we can calculate that each entry contains log2 3 ≈ 1.58 bits of data. Thus, we

are able to pack five hashcounter entries into a single eight-bit byte.

When inspecting or updating a particular field in the hashcounter, deco first determines

the byte in which the field occurs. Simple lookup tables are then used to either increment

or return the current value of the particular field requested. While this system notionally

requires an additional memory access for each operation, the lookup tables are sufficiently

small and frequently accessed that they should be largely cache-resident. Thus, the additional

cost is not onerous.

Using this implementation allows a hashcounter of 128 MB to contain 640 million separate

fields, thus allowing spex to be effectively used even on large collections.

Index structure

Deco indexes chunks in a high-performance compressed index. Postings lists are document-

ordered and document entries (with offsets) are stored as d-gapped, variable-byte compressed

integers (Zobel and Moffat, 2006). As noted in Section 3.8, the discovery task does not

make use of the actual value of the chunks that occur in multiple documents, but only of

the co-occurrence information encapsulated in the postings lists for each chunk. As such,

vocabulary and chunk values are omitted from the final inverted index. Note however that
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the chunk values are still required before partial indexes are merged into the final index, as

they constitute the key upon which lists are merged.

Some of the low-level index operations in deco are based on code from the Zettair1 search

engine developed at RMIT University.

Long postings lists

At present, the problem of long postings lists as discussed in Section 3.9 is managed by a

combination of chunk stopping (see Section 3.9.1) and coarse counting (Section 3.9.2). While

these measures prove satisfactory in many situations, long postings lists continue to present

an efficiency bottleneck. New, more sophisticated measures for dealing with this issue are a

topic for future research.

4.4 Experimental methodology

We seek to experimentally investigate two facets of the deco package: the accuracy and

reliability of the package in identifying co-derivative document pairs, and the scaling charac-

teristics of the system.

4.4.1 Document collections

In this section we describe the six document collections that we use in our experiments:

webdata+xml The webdata+xml collection was created by Hoad and Zobel (2003) and

consists of 3,307 web documents (approximately 35MB) extracted from the TREC web col-

lection (Harman, 1995). Into this background collection have been seeded nine documents

(the XML documents), all of which are co-derivatives. This set of co-derivatives was created

by distributing a single document discussing XML technology to nine separate authors, and

asking them to edit it substantially. In some cases the edits are so substantial that the

final document shares little text with the original. Nonetheless, by our definition, all these

documents should be classified as co-derived.

linuxdocs The linuxdocs collection was created by Hoad and Zobel (2003) and consists

of 78,577 documents (720 MB) drawn from the documentation included with several dis-

tributions of RedHat Linux. While the webdata+xml collection serves as an artificial but

1http://www.seg.rmit.edu.au/zettair/
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easily-analysed testbed for co-derivative identification algorithms, the linuxdocs collection,

rich in duplicate and near-duplicate documents, is a larger and more challenging real-world

collection.

all-newswire The all-newswire collection is an aggregation of the newswire collections

gathered for the TREC project (Harman, 1995). This collection includes a large number of

articles from newswires originating from sources including the Wall Street Journal, the Los

Angeles Times, Associated Press, and the Financial Times. This collection is about 5.3 GB

in size, and is used to investigate the scaling properties of the deco package.

LATimes The LATimes collection is a subset of the all-newswire collection, consisting of

476 MB of articles from the Los Angeles Times. This collection is used to investigate the

index growth we may expect from a typical collection of documents.2

GOV1 & GOV2 The GOV1 and GOV2 collections were created for the TREC project.

Both are crawls of the .gov domain, the former consisting of 18.1 GB of data, the latter of 426

GB of data, making it the largest publicly available standard collection of web documents.

4.4.2 Metrics for evaluation

We suppose that each collection of documents has associated with it an underlying reference

graph, the ‘true’ relationship graph for that document. Note that this is an idealised

construct: at the fringes, the question of whether a given pair of documents is co-derived is

a subjective one. Nonetheless, it is reasonable to assume that a relationship graph carefully

constructed by an expert, unbiased human judge provides a good approximation of the

reference graph.

We define the coverage of a given computer-generated relationship graph to be the pro-

portion of edges in the reference graph that are also contained in that graph, and the density

of a relationship graph to be the proportion of edges in that graph that also appear in the

reference graph.

While coverage and density are in many ways analogous to the standard recall and pre-

cision metrics, we choose the new terminology to emphasise that the task is different to

2Though in one sense there is no such thing as a ‘typical’ collection of documents, LATimes is neither

cleaned of co-derivatives nor deliberately contrived to contain them, in contrast to the webdata+xml and

linuxdocs collections.
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Figure 4.4: An example of a computer-generated relationship graph. The dashed line indicates

a spurious inclusion; the two dotted lines show co-derivation relationships that were not

detected by the algorithm.

querying. We are not trying to meet an explicitly defined information need, but are rather

attempting to accurately identify existing relationships within the collection.

Figure 4.4 shows a hypothetical example of a computer-generated relationship graph for

the same collection as Figure 2.2. The dashed line shows a spurious co-derivation judgement

between documents 3 and 5. The dotted lines show the omission of co-derivation relationships

between documents 2 and 7, and between documents 5 and 7. Given that the algorithm

identified four of the six co-derivation relationships in the reference graph, it has a coverage

of 67%. As four of the five co-derivation relationships identified existed in the reference

graph, it has a density of 80%.

While the notion of a human-generated reference graph is a useful one, it is infeasible

to construct one for any but the smallest of document collections. Doing so would require

side-by-side judgements of every document pair in the collection to be made. For a relatively

modest collection of 10,000 documents this amounts to nearly 50 million judgements. Given

the impracticality of generating a full reference graph, it is not possible to directly determine

the coverage and density of the relationship graph generated by an algorithm. We must

therefore resort to estimates.

To estimate the density of a relationship graph, we take a random selection of edges from
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the graph and judge whether the documents they connect are in fact co-derived. To estimate

the coverage of a relationship graph, we select some representative documents and manually

determine a list of documents with which they are co-derived. The coverage estimate is then

the proportion of the manually determined pairings that are identified in the relationship

graph. A third metric, average precision,3 is the average proportion of co-derivative edges

to total edges for the documents selected to estimate coverage. That is, given a target

document, we consider the manually-assigned list of co-derivatives to be relevant, and all

other documents irrelevant. The average precision simply computes the precision of the list

returned by deco with reference to this relevant set. While average precision is arguably

biased, and consequently is to be considered an inferior measure to density, it plays a role in

experimentation because it is far less time-consuming to calculate.

4.5 Efficiency considerations

In this section we empirically evaluate the efficiency and scalability of the spex algorithm,

and the effect of adopting certain optimisations on improving these values

4.5.1 Index growth rate

In order to investigate the growth trend of the chunk index produced by deco as the source

collection grows, we extracted subcollections of various sizes from the LATimes and linuxdocs

collections, and observed the number of duplicate chunks extracted as the size of the collection

was increased.

This growth trend is important for the scalability of spex and by extension the deco

package. For example, if the growth trend were quadratic, this would set a practical upper

bound on the size of the collection that could be submitted to the algorithm, whereas if the

trend were linear or n log(n) then far larger collections would become practical.

We found that for the tested collections at least, the growth rate follows a reasonably

precise linear trend, as illustrated in Figure 4.5. While further testing is warranted, a linear

growth trend suggests that the algorithm has potential to scale extremely well.

4.5.2 Scalability to larger collections

In order to test the ability of spex and deco to scale to larger collections, we ran deco on

the all-newswire collection. This took a little over four hours on a lightly-loaded machine

3Not to be confused with the average precision calculated over ranked lists, as discussed in Section 2.3.5.
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Figure 4.5: The total number of duplicate chunks found as the size of the LATimes collection

is increased.

with dual Intel Pentium III processors and 768 MB of RAM. We consider an indexing speed

in excess of one GB per hour on an older machine such as the one used to be acceptable for

this application. The index generated by deco was approximately 1.0 GB in size, or less

than 20% of the size of the source collection.

Deco has also been used to successfully index the 18.1 GB GOV1 collection, with similar

performance to that described for the all-newswire collection above. However, indexing

the 426 GB GOV2 collection has thus far proved impossible using deco on a standard

production workstation. This is due less to the collection’s size than the extremely high

level of duplication within GOV2. The degree of duplication causes the collection to violate

the working assumption of the spex algorithm, namely that a large majority of the chunks

occurring in a collection are singleton.

Our experience with GOV2 shows that the spex algorithm is most suited to collections

with a modest level of internal duplication. The relationship between collection size and

memory requirements is ultimately dependent upon the level of redundancy in the particular

collection being indexed. The level of redundancy at which the use of spex ceases to be

worthwhile is dependent on various factors, particularly the amount of memory and disk

available, and the time-sensitivity of the fingerprinting job. As a general rule, however, a
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strong case can be made for using spex on collections in which is overall level of redundancy

is at or below 25%.

Despite this caveat, our investigations demonstrate that the algorithm is able to scale to

quite large collections without encountering resource limitations.

4.5.3 Effect of identifying and excluding exact duplicates

As discussed in Section 4.3.1, deco includes an optional preprocessing stage in which exact

duplicate documents are omitted from the indexing process. The justification for this is that

it is relatively easy to identify exact duplicates and that they consume a disproportionate

amount of space in the chunk index.

Employing this preprocessing step for the all-newswire collection reduced the size of the

resultant shared-chunk index by approximately 10%. While this is not a spectacular result,

it is nonetheless a worthwhile saving.

When investigating the reason for the modesty of the saving, we found that a large number

of documents were nearly identical, but differed by just a few terms. In many newswires, for

example, the same article was released multiple times for different editions. As the edition

heading differed, the documents were not considered identical and thus no exclusions resulted.

While this problem might be especially characteristic of newswire collections, there are many

cases where one can imagine such trivial differences thwarting this simple preprocessing step.

One possibility for improvement is to use a single-fingerprint approach such as I-Match

(see Section 3.7) in order to capture documents that are not exact duplicates. However, I-

Match is not as fast as simply hashing entire documents, and using a more aggressive scheme

for identifying duplicates introduces the possibility of false positives. In Chapter 5 we discuss

a more conservative improvement that first canonicalises documents before hashing them in

order to eliminate trivial differences.

4.6 Effectiveness in identifying co-derivatives

In this section we empirically investigate the effectiveness of fingerprinting using deco and

the spex algorithm under a range of parameterisations.

For testing purposes, we established a range of five inclusion thresholds for each scoring

function, making for a total of 20 combinations. These thresholds are named T1 to T5 in

order of increasing value. Because of the different properties of the various scoring functions,

the values are not the same for each of T1 to T5. Note that the thresholds are not therefore
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T1 T2 T3 T4 T5

S1 20 100 200 500 1000

S2 0.03 0.05 0.10 0.15 0.30

S3 0.02 0.05 0.10 0.15 0.30

S4 0.02 0.05 0.20 0.50 1.0

Table 4.1: The values of thresholds T1 through T5 for the various scoring functions

designed to be directly comparable across scoring functions, but are intended to exhibit a

broad range of possible choices for each of the scoring functions S1 to S4. Exact values are

listed in Table 4.1.

In this section, we use the notation Sx/Ty/Pz to denote a run with scoring function Sx,

threshold Ty and modulo parameter p of z (see Section 3.6.5). For example, run S3/T2/P16

indicates the run using scoring function S3, threshold T2 and a modulo parameter p equal to

16.

4.6.1 Effectiveness on the webdata+xml collection

Because the webdata+xml collection contains the nine seed documents for which we have

exact knowledge of co-derivation relationships, it makes a convenient collection for proving

the effectiveness of the deco package and determining good parameter settings. Using deco

to create a chunk index with a chunk size of eight took under one minute on a 2.67 GHz

Intel Pentium 4 PC with 512 MB of RAM. For this collection, we tested deco using the four

scoring functions described in Section 4.3.2. In all cases the modulo selection function was

not used; that is, p was equal to one.

Combining the four scoring functions with the thresholds T1 to T5 led to the generation

of 20 relationship graphs.‘ Each of these was then examined for the presence of the 36 edges

connecting the XML documents to each other.

As can be seen in Table 4.2, the estimated coverage values strongly favour the lower

inclusion thresholds. Indeed, for all scoring functions using the inclusion threshold T1, 100%

of the pairings between the XML documents were included in the relationship graph. In all

cases the average precision was also 100%. These values — 100% coverage and 100% average

precision — suggest a perfect result, but are certainly overestimates. The nature of the

test collection — nine co-derived documents seeded into an entirely unrelated background
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T1 T2 T3 T4 T5

S1 100.0 97.2 36.1 8.3 0.0

S2 100.0 100.0 83.3 58.3 25.0

S3 100.0 91.7 72.2 52.8 16.7

S4 100.0 97.2 91.7 58.3 22.2

Table 4.2: Coverage estimates, as percentages, for the webdata+xml collection calculated

on the percentage of XML document pairings identified (p = 1). The average precision was

100% in all cases.

collection — made it extremely unlikely that spurious edges would be identified. This not

only introduced an artificially high average precision estimate but also strongly biased the

experiments in favour of the lower inclusion thresholds, because they allowed all the correct

edges to be included with very little risk that incorrect edges would likewise be admitted.

4.6.2 Effectiveness on the linuxdocs collection

In order to test deco in a less artificial environment, we repeated our experiments on the

linuxdocs collection. We again used deco to create a shared-chunk index with a chunk size of

eight. This took approximately 30 minutes on a 2.67 GHz Intel Pentium 4 PC with 512 MB

of RAM. For generation of relationship graphs we used the same range of scoring functions

and inclusion thresholds as in the previous section. Once again, p was in all cases set to one.

To estimate the coverage of the relationship graphs, we selected ten query documents

from the collection representing a variety of sizes and types. Given that the collection was

a collection of online documentation, these queries included both long and short man pages,

as well as HTML and info style documentation. For each of these query documents, we

manually collated a list of co-derivatives. As it was infeasible with the resources available

to undertake a comprehensive manual investigation of all the documents in the collection,

the list of co-derivatives was compiled with the aid of some standard tools and by making

use of domain knowledge. In particular, the nature of the collection gives us very reliable

keywords for search: in the evolution of the documentation for a command, one thing that

is very unlikely to change is the name of the command itself. Also, the naming conventions

for the documentation files were relatively consistent. Thus, with the aid of the standard

Unix ls and grep commands, we were able to compile lists of candidate co-derivatives for
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each query document with relative ease. Given this methodology, the lists of co-derivatives

for each query document cannot be asserted to be entirely comprehensive. However, the

nature of the collection gives us a reasonable degree of confidence that not too many of the

co-derivation relationships were missed.

Estimated coverage and average precision results for this set of experiments are given in

Table 4.3.

The results of these experiments demonstrate that document fingerprinting using the spex

algorithm is a practical and effective approach to the discovery problem for co-derivatives.

Several of the combinations of scoring function and inclusion threshold yielded accurate

results. In some cases, coverage was estimated at 100% while maintaining high average

precision, which in other cases average precision was maintained at 100% and nearly all co-

derivative pairs were identified. While none of the combinations yielded a perfect result, a

few came very close.

In general, the pattern of results demonstrates a classic tradeoff between recall (coverage)

and precision (density/average precision). By reducing the inclusion threshold, the likelihood

of finding a majority of co-derived pairs increases, but so does the likelihood of false positives.

This suggests that there is no ideal combination of scoring function and inclusion threshold,

but that the particular choice depends upon the requirements of the anticipated application.

The very different spread of results for the webdata+xml and linuxdocs collections suggests

that the choice of threshold is likely to be data-dependent and thus require tuning for optimal

performance.

It is interesting to note that the coverage/average precision values that were observed in

these experiments are far higher than the recall/precision values typical of topical information

retrieval experiments. This confirms that the syntactic-level task of co-derivative detection is

indeed a less difficult problem than the semantic one of finding documents relevant to a user’s

information need. The relative tractability of the problem and corresponding high accuracy

are encouraging and bode well for the use of document fingerprinting for the management of

digital collections.

The scoring functions S2, S3, and S4 were more effective than the simple chunk-counting

S1 scoring function. This demonstrates the importance of normalising results to the size of

the documents in question. However, there is little in terms of effectiveness to distinguish

between the latter three scoring functions. In terms of selecting which of these scoring

functions to use, then, the choice is somewhat arbitrary. One could argue that S4 should not

be chosen because there is no performance improvement in return for its increased complexity.
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T1 T2 T3 T4 T5

S1 100/ 70 89/ 71 56/ 93 36/ 95 34/100

S2 100/ 57 100/ 75 100/ 92 89/ 94 57/100

S3 98/ 75 96/ 84 94/100 84/100 47/100

S4 99/ 83 96/ 91 94/100 78/100 30/100

Table 4.3: Coverage and average precision estimates, as a pair X/Y of percentages, for deco

applied to the linuxdocs collection, using a full shared-chunk index (p = 1).

In future chapters we choose to use S3 as the scoring function for use with the discovery

problem; however, S2 could have done just as well.

We had insufficient human resources to complete an estimate of density for all of the

relationship graphs generated. Instead, we selected a range of configurations that seemed

to work well and estimated the density for these configurations by picking 30 random edges

from the relationship graph and manually assessing whether the two documents in question

were co-derived. The results corresponded closely with the average precision for the same

runs: S2/T3/P1, S3/T2/P256, and S4/T3/P16 all scored a density of 93.3% (28 out of 30)

while S4/T3/P1 and S2/T1/P16 both returned an estimated density of 100%. This suggests

that average precision is a good predictor of the true density value.

4.6.3 Effects of introducing lossy selection

In order to test the relationship between the lossiness of a selection heuristic and the degra-

dation in the reliability of co-derivative identification, we performed the same experiments on

the linuxdocs collection as above, this time with the modulo heuristic added to the selection

pipeline. We experimented with the p operator set to 16 and 256. A value of 16 represents

a value that is similar to many in the literature, while 256 studies the effect of a more ag-

gressive pruning. The only change to the experimental parameters was that the inclusion

thresholds for these experiments were adjusted downward commensurately with the modulo

operator so as not to bias the results. In other words, the thresholds were divided by 16 and

256 respectively, as this is the expected decrease in the number of shared chunks between

a given pair of documents. While this does not precisely mimic the behaviour of the case

when p = 1 — we are now dealing with probabilities rather than certainties — these are

nonetheless the most appropriate thresholds. A document meeting the minimum threshold
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T1 T2 T3 T4 T5

Fingerprinting modulo 16

S1 90/ 72 88/ 76 56/ 94 36/ 96 34/100

S2 90/ 75 90/ 75 80/ 94 78/100 57/100

S3 88/ 82 86/ 91 74/100 74/100 47/100

S4 88/ 85 86/ 93 86/ 93 69/100 60/100

Fingerprinting modulo 256

S1 54/ 95 54/ 95 54/ 95 54/ 95 34/ 97

S2 54/ 97 54/ 97 54/ 97 54/ 97 44/ 97

S3 54/ 97 54/100 54/100 51/100 42/100

S4 54/ 97 54/100 54/100 44/100 31/100

Table 4.4: Coverage and average precision estimates, as a pair X/Y of percentages, for deco

applied to the linuxdocs collection for indexes that store chunks only if their hash-key equals

zero modulo 16 and 256.

T in the case of p = 1 would be expected to have a score of T
z when p = z.

The results for these experiments are presented in Table 4.4. When the modulo heuristic

is used with p = 16, the results are noticeably inferior to those using the full lossless chunk

index generated by spex. Nonetheless, many of the value-pairs represent a compromise that

is acceptable in many practical situations. In an application where finding every single co-

derived document pair is not critical, the loss of a few percentage points in reliability in

return for a sixteen-fold reduction in the number of chunks indexed might be an attractive

trade-off.

For the modulo 256 index, no configuration was able to find more than 54% of the relevant

edges. This is almost certainly because the other 46% of document pairs simply do not have

any chunks in common that evaluate to 0 modulo 256 when hashed using our particular hash

function. This risk exists to a certain degree with any lossy selection scheme, but especially

so when the lossiness is too aggressive. Two documents with a significant number of shared

chunks could be overlooked even at the lowest thresholds because not one of their shared

chunks is included in the index. In many situations this would not be acceptable.

Interestingly, though the modulo 256 configurations were unable to achieve a high coverage

value, in many of the configurations the average precision was near 100%. This ability to
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accurately (though not comprehensively) identify co-derivative documents even in this very

lossy configuration demonstrates the robustness of document fingerprinting, and goes some

way to explaining why experiments with highly selective fingerprinting schemes such as in

Broder et al. (1997) are still able to meet with reasonable success.

4.7 Summary

Document fingerprinting using chunking is an appealing choice for detecting co-derivative

documents, and has been successfully used in the past for a diverse range of such applica-

tions (Manber, 1994; Brin et al., 1995; Shivakumar and Garćıa-Molina, 1995; Broder, 1997).

However, high resource usage of the full chunking approach has led to the use of selection

heuristics to only retain a subset of chunks from each document. We have argued that,

with existing chunk-selection heuristics, one can have either reliability or acceptable resource

usage, but not both at once.

In this chapter we have introduced the spex algorithm for efficiently identifying and

discarding the singleton chunks in a collection. Singleton chunks represent a large proportion

of all chunks in many collections — over 98% in one of the collections tested — but play

no part in discovery of co-derivatives. Identifying and discarding these chunks means that

document fingerprints only contain data that is relevant to the co-derivative discovery process.

In the case of the LATimes collection, this allows us to create an index that is functionally

equivalent a complete index of all chunks but contains only one fiftieth of the postings lists.

Such savings allow us to implement a system that is effective and reliable yet requires only

modest resources.

Experiments on our deco system (which uses the spex algorithm) on a variety of test

collections have demonstrated that the package is capable of reliably discovering co-derivation

relationships within a collection, and that introducing heuristic chunk-selection strategies

degrades reliability.

There is significant scope for further work and experimentation with deco. Although we

have demonstrated that the system is able to scale to quite substantial collection sizes, it is

important to continue to investigate additional optimisations to the algorithms and systems.

This is both to increase the speed of the system and to allow it to scale to the extremely

large multi-terabyte collections that are being managed in many domains.

We found that collections such as GOV2 that contain an extremely high level of docu-

ment duplication cause spex to perform poorly in terms of resource economy. This is most
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likely because such high levels of redundancy violate the working assumption of the spex

algorithm that a large proportion of all chunks in the collection are singletons. Increasing

the robustness of spex so that it can work effectively when this assumption is violated must

be an important objective of future work, although it is unclear how this can be achieved

without fundamentally altering the nature of the algorithm.

A limitation of spex is that it is a one-shot algorithm: it must have access to the entire

collection in order to build a shared-chunk index for it. It is not possible to later add

additional documents to the collection without rebuilding the entire index. The difficulty of

extending the index is the one major defect of spex compared to many other fingerprinting

selection heuristics. We believe that it is possible to write an adjunct to spex that, while it

would carry some overhead, would allow for incremental building of the shared-chunk index

as new documents are added to the collection.



Chapter 5

Managing redundancy in web

search

This chapter contains material that first appeared in Bernstein and Zobel (2005).

Web search engines try to present information to users in such a way as to allow them to

minimise the effort required to satisfy their information needs. Broadly, they attempt to meet

this aim by following the probability ranking principle, as discussed in Section 2.3.3. While

this approach is in general reasonably robust, the various simplifications made in formulating

the probability ranking principle can lead to distortions in which success according to this

principle does not accord with success in terms of the fundamental goal of minimising user

effort.

In this chapter, we concentrate on one such distorting factor: redundancy of information

between documents. It should be obvious that presenting a user with a ranked list in which

the top-ranked documents, though relevant, have a high degree of mutual redundancy, will

not in general meet the goal of allowing the user to satisfy their information need with a

minimum expenditure of effort. The problem of redundancy is compounded by the fact that

most commonly-used effectiveness evaluation methodologies do not take it into account. This

means that the problem is not evident in system-oriented evaluation of performance. It is

therefore important that the level of redundancy be explicitly taken into consideration both

when ranking documents and when evaluating search engine performance.

116
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There have been several attempts to address the issue of redundancy in ranked lists. The

maximal marginal relevance (MMR) model (Carbonell and Goldstein, 1998) iteratively con-

siders the degree of redundancy of documents with respect to the ranked list when selecting

documents to add to the list. The TREC novelty track (Harman, 2002; Soboroff and Harman,

2003), the aim of which is to extract novel and relevant sentences from an ordered list of

relevant documents, has provided evaluation of various techniques for decreasing redundancy

in result lists. However, it is unclear whether it would be feasible to add any of the meth-

ods evaluated in the track to a standard search engine (Allan et al., 2003). Fundamentally,

the generalised novelty task as defined in the novelty track suffers because it is intractable:

novelty as a concept is difficult to define, recognize, and evaluate.

In this chapter, we define and explore a restricted form of the redundancy relation

that is more tractable both in terms of ranking and evaluation. Content equivalence is a

query-independent relation between pairs of documents whereby they are considered content-

equivalent if they have the same information content. Pairs of exact duplicates are content-

equivalent, but various factors — such as formatting — can lead to significant superficial

variations between content-equivalent documents. Nonetheless, we hypothesize that content

equivalence is a relation that leaves significant syntactic evidence. Thus, we apply both a

simple document canonicalization technique and the deco fingerprinting package to the task

of identifying content-equivalent document pairs in a document collection.

This chapter is structured as follows. In Section 5.1 we discuss the issue of inter-document

redundancy in search results, and existing approaches to management of redundancy. In

Section 5.2 we define content equivalence and justify the usefulness of such a definition. In

Section 5.3 we report on the results of a user experiment undertaken to set a score threshold

for content equivalence using the deco system. We then report on experiments investi-

gating the prevalence of content equivalence in the GOV1 and GOV2 web data collections

(Section 5.6), and on ranked result lists from the 2004 TREC terabyte track (Section 5.7).

Finally, in Section 5.8 we evaluate and discuss the level of inconsistency in judgements for

the topics in the 2004 TREC terabyte track.

Our approach is deliberately conservative, because in this application an error-prone

algorithm may inadvertently conceal essential information from the user. Nonetheless, we

show that we are able to identify large numbers of content-equivalent document pairs in the

TREC GOV1 and GOV2 collections. More significantly, our experiments show that content

equivalence is frequent between documents co-occurring in ranked lists submitted to the

2004 TREC terabyte track. This finding has two consequences: first, that the effectiveness
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of search systems is being significantly overestimated, because the degree of redundancy

in the ranked lists is not taken into account; and second, that the effectiveness of many

search systems could be substantially increased by detecting and removing content-equivalent

documents from ranked lists as a postprocessing step.

Another interesting result to come from our analysis concerns the degree of inconsis-

tency in the relevance judgements for the 2004 TREC terabyte track. Discovery of content-

equivalent document pairs gave us an opportunity to automatically estimate how consistent

judges have been in assigning relevance values to documents. Our results show a signifi-

cant number of contradictory relevance judgements, in which the documents in a content-

equivalent pair were given opposing relevance judgements. This raises difficult-to-answer

questions regarding system-evaluation methodology.

In this chapter we have focused on evaluation of the redundancy problem in web data.

While the particulars may vary, the issue of redundancy exists in many other types of docu-

ment collections, and must similarly be addressed. Many of our observations in this chapter

can be generalised to other types of document collections.

5.1 Redundancy in search results

In Chapter 2 we asserted that the operation of search engines is guided by the principle

of utility, and that in this context the task of the search engine is to help a user satisfy

their information need with a minimal expenditure of effort. As this goal is too abstract

to implement directly, most search systems are guided by the probability ranking principle,

which states that documents should be ranked in order of decreasing probability of relevance

to the user. Relevance is, in turn, generally defined as a relation solely between a document

and the user’s query or information need. Evaluation metrics such as MAP and R-precision

similarly emphasize the probability ranking principle by rewarding a concentration of relevant

documents amongst the top rankings in a result list.

One deficiency of the probability ranking principle as it is used is that it takes no account

of the widespread phenomenon of inter-document redundancy. It is often the case that a

document, though relevant in isolation, contains nothing new or interesting by the time it

has been viewed by the user. It follows that, for typical querying, the presentation of such a

document should not be considered beneficial. For some information needs, the existence or

location of redundant documents may be of value to the user, but such cases are probably

rare. In most cases, it is the content itself that the user seeks. It follows that in order for
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Figure 5.1: An example of a search result that has high measured effectiveness but is unsat-

isfactory to the user due to redundancy.

a document to be of value to the user, it must not just be relevant to the information need

but must also contain an element of novelty.

Figure 5.1 shows an instance of a search in which a popular commercial web search

engine has returned many copies of the same document in response to a search for that

document. The ranked list in the figure is not likely to be perceived by the user as an

optimal arrangement. The documents are highly redundant with respect to each other, and

the user would gain little from viewing all of them. However, the result would be considered

highly effective with reference to the probability ranking principle: the top ten results are all

unquestionably relevant to the query according to the commonly employed system-oriented

definition of relevance. Furthermore, this result would be awarded a high score by any of the

effectiveness metrics discussed in Section 2.3.5.
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5.1.1 Redundancy and the cluster hypothesis

The cluster hypothesis (Jardine and van Rijsbergen, 1971) conjectures that similar documents

are likely to be relevant to the same information needs. In other words, relevance tends to

occur in clusters. This makes intuitive sense: one expects that documents addressing the

same topic (and hence relevant to that topic) are more likely to have high similarity than

a randomly selected pair of documents. The cluster hypothesis is generally accepted, and

has been the subject of several empirical evaluations (Jardine and van Rijsbergen, 1971;

Voorhees, 1985).

The cluster hypothesis has influenced search at several levels. Most directly, it has been

the motivation behind cluster-based retrieval (Jardine and van Rijsbergen, 1971; Voorhees,

1985; Hearst and Pedersen, 1996; Liu and Croft, 2004), a search paradigm in which the

user is presented with a series of document clusters rather than a ranked list of documents.

Diaz (2005) proposed regularization, in which the cluster hypothesis is directly incorporated

into the document scoring model, demonstrating in the process that the cluster hypothesis

underlies successful techniques such as pseudo-relevance feedback (Ruthven and Lalmas,

2003).

The link between cluster hypothesis and query expansion techniques such as pseudo-

relevance feedback suggests that their use has the potential to increase redundancy in ranked

lists: highly redundant documents (and particularly duplicates and near-duplicates) will

naturally cluster very well. Thus, both the simple fact of the cluster hypothesis and its ap-

plication to increase the level of clustering in result lists suggest that redundancy is implicitly

encouraged under the current independent-relevance model.

Such a divergence between the fundamental objective of information retrieval and the

principles along which we design and evaluate our retrieval systems is a cause for serious

concern. We can easily fall into the trap of pursuing objectives that are beneficial in terms of

the simplified principle but are detrimental to the fundamental objective. Thus, when such

a divergence is noted, it is necessary to rectify the model in order to bring it into line with

the fundamental objective.

5.1.2 Modelling redundancy

There have been various attempts to incorporate redundancy into the model used for ranking

documents. We describe the more pertinent of these attempts in this section.
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Maximal marginal relevance

The maximal marginal relevance (MMR) technique aims to promote diversity by iteratively

scoring documents according to their marginal relevance with respect to the current ranked

list (Carbonell and Goldstein, 1998). The marginal relevance can be interpreted as an esti-

mate of the ‘relevant novelty’ of a document: the degree to which the relevant information

contained in the document is also novel. MMR builds the ranked list iteratively by selecting

for each successive ranking the document that has the highest marginal relevance MR with

reference to those documents already in the list. The iterative process selects the document

to occupy position i + 1 in the list as follows:

ri+1(q) = argmax
d∈C

[

λ · S1(d, q)− (1− λ) ·
i

max
n=1

S2(d, rn)
]

(5.1)

where C is the collection being searched, S1 and S2 are any similarity scoring functions, and

λ is a tuning parameter. When λ = 1, the ranking generated will be a standard relevance

ranking according to S1. When λ = 0 the algorithm will attempt to maximise the diversity of

the ranked list according to S2 without any reference to the estimated relevance of documents.

For all other values of λ a document will be scored according to a combination of its relevance

to the query and its novelty with respect to those documents that precede it. Thus, if a

document is highly similar to a document that already occurs in the ranked list, its score

will be significantly degraded.

Maximal marginal relevance is a robust framework for incorporating redundancy consid-

erations into the ranking process, and has the convenience of being able to be applied on

top of existing scoring models that have shown themselves to be effective. MMR does have

deficiencies, however. In particular, the fact that the marginal relevance of a document is

calculated as a linear combination of relevance and novelty scores belies the name of the

model: it does not truly attempt to calculate a marginal relevance, as relevance and novelty

are treated as orthogonal. Furthermore, MMR imposes a significant computational burden

during ranking. For each rank position, the algorithm must recompute the scores for all

documents. In a standard ranking process, scores must only be calculated once.

Novelty

The TREC novelty track (Harman, 2002; Soboroff and Harman, 2003; Soboroff, 2004) was

discussed briefly in Section 2.4.2. The track focused on a sentence-level retrieval task in



122 CHAPTER 5. MANAGING REDUNDANCY IN WEB SEARCH

which, ideally, each sentence was returned only if it was relevant and contained some novel

information given the sentences that preceded it.

Participants in the novelty track proposed a wide variety of techniques for modeling

novelty, ranging from simple term-based counting metrics, through traditional metrics such

as cosine similarity, to custom-designed metrics based on statistical language models and

hidden Markov models. While some of these techniques seemed to work reasonably well, the

novelty track brought to light serious concerns regarding the underlying task, both with the

difficulty of the task and with the evaluation process.

One fact that became very clear during the years in which the novelty track operated

was that accurately detecting relevant, novel sentences is far from easy. Semantic concepts

such as novelty — or, indeed, relevance — are notoriously difficult to reliably detect with

automatic means. This is reflected in the low recall and precision scores prevalent in most

areas of information retrieval; high accuracy is not currently achievable. The problem is

that, while inaccuracy is acceptable for relevance, it is less so for novelty. Because systems

in the novelty track aim to highlight only novel information, all other information — that

which is determined to be redundant — is effectively discarded from the search result. Thus,

misclassification of novel information as redundant could lead to critical information being

overlooked. It is therefore not clear whether the current level of performance at the novelty

task actually improves the user experience or in fact degrades it.

A major problem that has been faced in the novelty task is that effectiveness evaluation

has proved extremely difficult. The fact that the novelty of a sentence depends on every

sentence that precedes it means that the task has had to be evaluated on a small, predefined

set of documents presented in a specific order. Furthermore, in order to have a larger pool of

relevant sentences on which to base the assessments, all documents in the list were strongly

relevant to the query. However, this practice may have introduced a bias in the results.

Allan et al. (2003) suggest that this practice of using only relevant documents could mean

that existing results do not predict performance in more realistic search environments.

The novelty track also recorded a high level of disagreement between human judges re-

garding the novelty status of sentences. This suggests that even at the fundamental human

level novelty is a vague notion. Thus, computers cannot be expected to achieve an acceptable

level of accuracy at an inherently difficult and loosely-defined task.

For the reasons outlined above, the general novelty task is currently intractable both in

terms of accurate detection of novelty and in terms of evaluation of system effectiveness. It

is apparent that it will be quite some time before there is a general technique for identifying
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redundant documents that has satisfactory precision. New evaluation models that allow for

redundancy to be taken into account in a reusable and cost-effective manner seem similarly

remote. In the meantime, it is important that we do what is possible to manage the seri-

ous problem of redundancy in search-engine results. It is in this spirit that we define and

investigate a restricted definition of redundancy that is largely free of such concerns.

5.2 Content Equivalence

We refer to a pair of documents as being content-equivalent if they convey the same in-

formation as each other. A functional interpretation of this relation is that an information

consumer, having viewed one document, would gain no new information by viewing the other.

Content-equivalent documents are therefore informationally redundant with respect to each

other.

Content equivalence is a semantic notion; however, one would expect a strong correla-

tion between document-pairs that are content-equivalent and those that are considered to be

duplicates or near-duplicates. As such, we hypothesize that, despite being a semantic con-

cept, content equivalence can be effectively detected using syntactic approaches, in particular

document fingerprinting.

It is obvious that two identical documents are content-equivalent. However, documents

that are not bytewise identical can still convey precisely the same informational payload. A

common scenario in the TREC .gov data is the presence of two identical documents, one in

HTML and the other converted to plaintext from PDF. These documents are identical on a

word-by-word level but vary significantly in the way they are stored. In other cases, docu-

ments vary in their formatting and hyphenation. Another kind of case is where a document

is updated without affecting most of the text, such as alternative forms of the same press

release or different versions of the same policy document.

Duplication or near-duplication of documents has been noted as a special-case or extreme-

case example of document redundancy (Zhai et al., 2003; Zhang et al., 2002). We show

through the case of content equivalence that document duplication and near-duplication is

neither special nor extreme; rather, it is widespread and has a significant impact on search

results.

Note that we are also advocating a change in emphasis from that of the TREC nov-

elty track. Rather than attempting to identify and promote cases of novelty — which can

be difficult to establish and damaging if inaccurate — we argue for the more conservative
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approach of identifying obviously redundant documents and eliminating them or presenting

them as a single list item. While with perfect detection accuracy the two ultimately amount

to the same thing, the difference in emphasis is significant in its practical outcome because

it encourages a more conservative approach to the management of redundancy.

5.3 Classification of equivalence

We apply the deco document fingerprinting system described in Chapter 4 to identify

document-pairs that are content-equivalent. Just as we used a scoring threshold in Chapter 4

to determine whether a document-pair was or was not co-derived, we now use a threshold to

determine the content equivalence status of a document pair. As discussed in Section 4.6.2,

the results of our experiments on the effectiveness of the deco system suggested that there

was nothing in the characteristics or the performance of the S2 and S3 scoring functions that

allowed a meaningful distinction to be made between them. Both functions were simple,

cheap to compute, and gave excellent performance. Given this absence of a discriminative

criterion, we have chosen largely arbitrarily to make use of the S3 scoring function.

In order to set a threshold that allows us a good combination of accuracy and sensitivity,

we conducted a user study to study the nature of the correlation between the S3 score of a

document-pair and the likelihood that the pair is indeed content-equivalent. The user study is

described in this section; we find that, as well as giving information on the correlation between

content equivalence and S3 score, the user study provided us with valuable additional insight

into the nature of content equivalence in web document collections. Based on this insight, we

define and discuss a modified form of content equivalence that we call conditional equivalence.

Further user experiments are then conducted to select and justify a suitable S3 score

threshold for reliably differentiating between document-pairs that are content-equivalent and

those that are not.

5.3.1 Initial experiments

In our initial user study we required participants to classify document-pairs, presented side-

by-side in a browser window, into one of the following four categories:

Level 3. The documents have identical content; the documents have no visible differences.

Level 2. The documents have completely equivalent content; any differences between

the documents are trivial and do not differentiate them with respect to any reasonable

query.
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Level 1. The documents have nearly equivalent content; any differentiation between the

documents is minor with respect to any reasonable query.

Level 0. The documents are not equivalent; differences between the documents are sig-

nificant enough to differentiate them with respect to reasonable queries.

We avoid defining the term ‘reasonable’ too precisely. A reasonable query is a best-effort

attempt at expressing an information need that one might plausibly have. A reasonable

search engine makes sensible use of available information in order to make a best-effort

attempt at answering the information need expressed in a given query.

The QRELS collection (described more fully in Section 5.7.1) consists of all documents

that were judged for at least one of the topics used for the 2004 TREC terabyte track. It is

our hypothesis that these documents are on the whole of a higher quality than the collection-

wide average. Deco was run on this collection using the S3 scoring function and with the

modulo selection heuristic disabled. From the relationship graph generated by deco, a pool of

420 document-pairs was randomly sampled such that their S3 scores were evenly distributed

between 0.4 and 1.01. Document-pairs from this pool were presented to participants in a

random order. The S3 scores of document-pairs being assessed were not disclosed to the

participants.

A group of four people participated in the pilot study, each providing assessments for

105 document-pairs from the pool. The results, particularly for levels 2 and 3, were not

sufficiently robust to be truly useful in an operational setting. Failure analysis revealed that

there were many pairs for which content was equivalent in all but very particular circum-

stances. For example, two documents may have had the same body but different navigational

links. Although the navigational links would not differentiate the documents with respect to

most queries, some queries may directly address these navigational links. In such cases the

documents would not be equivalent.

We made the observation that, if we partitioned many of these document pairs into those

parts that were content equivalent and those that were not, the partitions would be topically

disjoint. In the above example of a document-pair with the same body text but different

navigational links, the links address a very distinct topic — the structure of the website —

from the topic which is addressed by the text in the body of the page. Thus, it is not possible

to formulate a coherent query for which both the partitions are relevant to the information

need.
1In order to make the best use of our assessors we decided to classify all pairs with lower scores as not

being content-equivalent based on prior inspection.
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5.3.2 Conditional equivalence

The insight gained from the pilot study suggested the concept of document-pairs possessing a

conditional equivalence. Conditionally equivalent pairs of documents are those for which the

space of queries can be partitioned into two categories: those in which the two documents

are equivalent with respect to the information need, and those in which only one of the

documents would be returned by a reasonable search engine. In other words, there are no

queries for which both documents may reasonably be considered relevant to the query and

yet at the same time not be considered equivalent. Another interpretation can be derived

from the MMR model discussed in Section 5.1.2: a document pair is conditionally equivalent

if both documents have a marginal relevance of zero with respect to the other in all cases,

either because it is not relevant to the query or because it is no longer novel. An example

of a pair of documents that can be considered to be conditionally equivalent in presented

in Figure 5.2. The two documents conatin the same body text, but one has a navigational

frame while the other does not. Any query for which both documents may rank highly will

naturally be addressing the body of the text, and thus the navigational matter will not be

relevant in such a case.

The significance of conditional equivalence is that within a given result list, documents of

this class can be considered content equivalent. The presence of both documents in the result

list implies they are equivalent for that query. Thus, knowledge of conditional equivalence

relations within a collection can be used for postprocessing of ranked lists to remove or cluster

documents from the list that are conditionally equivalent with documents that are higher up

the list.

It may be argued that such a definition of equivalence is contrived and designed primarily

to salvage our experimental results. However, it is our belief that in this context all definitions

must ultimately be functionally driven. We assert that the definitions of content equivalence

and conditional content equivalence are suitable for the domain of web search, and have

presented arguments and use-cases above demonstrating that this is the case. In different

situations, or under other sets of assumptions, alternative definitions may be more suitable.

5.3.3 Further experiments and threshold choice

For the main study, a group of 12 participants assessed a total of 964 document pairs for

equivalence using the above criteria. We retained the same methodology as in the pilot study,

but changed the classification categories based on our concept of conditional equivalence
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(a)

(b)

Figure 5.2: Two documents that are conditionally equivalent: document (b) contains the

same text as document (a), as well as containing a navigational frame. On a query for which

both documents are likely to be returned, the relevant information will be equivalent.

discussed above. Participants in the main study were requested to classify document pairs

into one of the categories below:

Level 3. The documents have completely equivalent content; any differences between

the documents are trivial and do not differentiate them with respect to any reasonable

query.

Level 2. The two documents are conditionally equivalent; with respect to any query for

which both documents may be returned by a reasonable search engine, the documents

are equivalent. Any query for which the documents are not equivalent would only

return one or other of the documents.

Level 1. The documents have nearly equivalent content with respect to any query for

which both documents may be returned by a reasonable search engine; for those queries

where the documents are differentiated, the differentiation is minor.

Level 0. The documents are not equivalent; differences between the documents are sig-

nificant enough to differentiate them with respect to reasonable queries.
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Figure 5.3: The proportion of document pairs judged to exceed various equivalence levels, for

S3 threshold values from 0.4 to 1.

Note that we no longer asked participants to differentiate between identical and content-

equivalent documents as we did in the pilot study. This distinction was concluded to be

unnecessary in a context where we are concerned entirely with the information content of

the documents.

Results from the study were collated and analysed. Figure 5.3 shows the classification

precision as the S3 threshold increases; that is, the values at a particular S3 value indicate

the level of accuracy for all document pairs at and above that score. The graph indicates a

reasonably strong linear relationship between the S3 score for a document and the likelihood

that it is content-equivalent. Note the relatively low accuracy for level 3 document pairs.

This result means that many document pairs identified as content-equivalent by deco do

have some point of difference (albeit a very small one in many cases). This suggests that it

may not be prudent to purge documents from a collection at index-time, as there may be

particular situations in which a given document may be needed despite its near-equivalence

to other documents. However, the S3 score shows high levels of accuracy for level 1 and

level 2 document pairs.

Given the lack of an obvious step-point at which to place a threshold, we has to make a

somewhat arbitrary choice. We determined to choose a threshold such that 95% of assessed

document pairs with an S3 score exceeding the threshold had been rated as equivalent at

level 1 or above. On the data collected, the threshold at which level 1 accuracy first exceeds

95% is 0.58. We thus use this threshold value of 0.58 to signify conditional equivalence in
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our further experiments this chapter. The proportion of documents at this threshold that

were categorised at level 2 or above was 87%.

The choice of a classification threshold with a predicted accuracy of 95% must be borne

in mind when interpreting results in later sections. When figures are reported for the number

of document-pairs classified as being conditionally equivalent, one would expect that 5% of

such classifications are erroneous using the current system.

Our results show that document fingerprinting using deco and spex with the S3 measure

is able to accurately identify content equivalence between documents. While not failure-proof,

the method appears robust. Given that for any pair of documents identified as being content-

equivalent the one that is more highly ranked with respect to the query is returned to the

user, and that the other document in the pair can be made available to the user on request,

the incidence of information loss is likely to be low.

5.4 Retrieval equivalence

In addition to using the deco document fingerprinting system to automatically identify

content-equivalent documents, we also experiment with retrieval equivalence, an easy-to-

compute restricted form of content equivalence motivated by the operation of search engines.

A set of documents is retrieval-equivalent if once they are canonicalized — stripped of for-

matting and other information that is not considered during indexing — they are identical.

This means that the documents will be indistinguishable to a search engine at retrieval

time. Retrieval-equivalent document sets provide a very strong assurance of being content-

equivalent, as their textual content is virtually identical. As the computation cost for retrieval

equivalence is far lower than that of document fingerprinting, we use it as a baseline to test

whether the additional effort of document fingerprinting is worthwhile.

The method for detecting retrieval equivalence follows trivially from the definition: docu-

ments in the collection are canonicalized and then hashed using the MD5 algorithm (Rivest,

1992). The list of hash values is sorted and all sets of documents sharing an identical MD5

hash are considered to be retrieval-equivalent. The asymptotic cost is thus O(n log n) for n

documents but in practice the dominant cost is reading the documents, which exhibits O(n)

complexity.

We experimented with six levels of canonicalization, where each level adopts all the

measures of previous levels. The six levels are as follows:

1. whitespace normalized
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Collection Year crawled Size (GB) # documents # duplicates removed

GOV1 2002 18.1 1,247,753 267,370

GOV2 2004 426.0 25,205,179 2,950,950

Table 5.1: Statistics for the GOV1 and GOV2 collections.

2. tags removed

3. punctuation removed

4. case folded

5. stopwords removed

6. words stemmed

Note that the possibility of hash collisions is negligible: MD5 is a 128-bit hash, meaning that

the space of possible values is 2128. On a collection of one billion documents the likelihood

of a single collision is about 10−22.

5.5 Document collections

The following sections report on a series of experiments arising from the presence of content-

equivalent documents in web collections. We make use of three document collections for these

experiments: GOV1, GOV2, and QRELS, which are collections of web documents from the

.gov domain created for TREC. The GOV1 and GOV2 collections were previously described

in Section 4.4.1. Further information regarding these collections is presented in Table 5.1.

According to the TREC track information, exact duplicate documents have already been

removed from these collections. The QRELS collection is a subset of GOV2 and is described

later.

5.6 Equivalence in the .gov domain

A question that immediately arises in the context of redundancy in web search results con-

cerns the level of duplication in web collections. Naturally, if the level of redundancy in the

web itself is sufficiently low then we need not worry much about the issue of redundancy when

searching it. If, however, we can demonstrate that there are many equivalent documents in

web collections then the issue merits further investigation. In this section we attempt to

quantify the level of redundancy in two collections of web data.
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We use deco to determine both content equivalence and retrieval equivalence for the

GOV1 collection. As previously discussed in Section 4.5.2, we are not currently able to

process the GOV2 collection using spex on our current hardware. As identifying content

equivalence requires knowledge of S3 scores derived from the fingerprinting process, we were

only able to identify retrieval-equivalence for this collection.

It is important to be careful when interpreting the results of these experiments. We are

attempting in this section to quantify the degree of content equivalence one may expect to

find on the web. The difficulty is that the web is, in a sense, subjective. For various technical

reasons, the constitution and shape of the web is dependent to a large degree on the entity

observing it. Whether a document occurs once or thousands of times is often a matter of

interpretation. Thus, the influence of the crawler — the agent responsible for compiling web

collections — must not be neglected. If a different crawler were to be used, different results

may be observed. Given that they have been compiled by state-of-the-art crawlers, however,

GOV1 and GOV2 can be considered representative of the sort of web snapshots with which

modern search and indexing systems must deal.

5.6.1 Equivalence in GOV1

We explored the level of retrieval equivalence in the GOV1 collection under each of the six

degrees of canonicalization defined in Section 5.4. We found that when only whitespace and

HTML tags were removed, there were 21,840 sets of retrieval-equivalent documents for a

total of 97,048 documents. When all further transformations were applied, this increased

to 22,870 sets for a total of 99,227 documents. In other words, most of the documents

composing the clusters became identical as a result of having HTML tags removed; few

additional documents were identified as a result of further transformations. In light of this

outcome, all further experiments applied the highest level of canonicalization, as the precise

degree of canonicalization does not have a significant impact on the final result. In general,

documents in these sets can be considered completely content-equivalent (level 3) and in

many cases it is reasonable to eliminate all but one of these documents from the collection

prior to indexing.

It is interesting to note that despite the removal of exact duplicates in the construction of

the GOV1 collection (as shown in Table 5.1), we have been able to cluster a large number of

effectively identical documents. This demonstrates the limitation of check-summing or other

exact hashing techniques for redundancy management. Non-content elements such as tags,
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Figure 5.4: Distribution of retrieval-equivalent set sizes in the GOV2 collection, on log-log

axes.

scripts, or filenames can all render entirely redundant documents non-identical at the binary

level.

We then use fingerprinting to try to find further content-equivalent documents in this

collection. As discussed in Section 5.3.3, we have chosen based on user experiments to use

the S3 scoring function with a threshold of 0.58. In these experiments, the chunk length has

remained at eight words, and the modulo selection function was not used.

When we use fingerprinting on the collection, we find a total of 215,314 documents that

are participating in a conditional equivalence relationship, or 116,087 additional documents

compared to retrieval equivalence only. In total this means that 17.3% of documents were

non-unique within this relatively small collection, already a relatively high figure. As collec-

tions grow larger and more comprehensive, one would expect this proportion to grow.

As discussed in Section 5.3.3, it is not advisable to prune documents from the collection

being indexed based on conditional equivalence, as different documents from a conditionally

equivalent set may better serve different sets of queries. The recommended action is to keep a

record of conditional equivalence relationships and use this information to postprocess ranked

lists. If a document in a ranked list is conditionally equivalent to a document that appears

higher in the list then it may be removed from the list, reducing the overall redundancy in

the final ranked list returned to the user.

5.6.2 Retrieval equivalence in GOV2

Our analysis of retrieval equivalence in the GOV2 corpus discovered a total of 6,943,000 docu-

ments in 865,362 separate retrieval-equivalent clusters. Thus, a total of 6,077,638 documents

in the collection are entirely redundant for retrieval purposes, in addition to the 2,950,950
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Figure 5.5: A document that appears 300 times in the GOV2 collection.

duplicate documents that had already been removed at crawl time. These 6,077,638 doc-

uments represent nearly 25% of the documents in the official corpus, which is consistent

with previous investigations of text duplication in web crawls (Broder et al., 1997; Fetterly

et al., 2003), which reported figures in the range of 25%–30%. Based on our results for

GOV1, we speculate that further large numbers of document-pairs will be classified as being

conditionally equivalent using document fingerprinting.

The results on GOV2 show several extremely large sets of documents that are retrieval-

equivalent. The largest set encompasses 512,030 documents — 2% of all the documents in

the GOV2 collection. Figure 5.4 shows the frequency of occurrence of sets of various sizes.

The linear character of the distribution on double-log axes is indicative a power-law distri-

bution. This is consistent with the results of Fetterly et al. (2003), with the graph showing a

high degree of similarity to graphs constructed from a crawl of 150 million documents from

the general web. There is even a similar curious artefact at set sizes of about 100, which

Fetterly et al. attribute to mirroring. There were many large sets that contained reasonably

information-rich documents. An example of a document that occurred 300 times is shown in

Figure 5.5.

We wished to investigate whether the extremely large clusters of retrieval-equivalent

documents were the result of some anomaly within the spex system, null documents —

documents without any non-tag content — or genuine duplicates. We selected ten documents

at random from each of the ten largest clusters and examined them manually in order to

determine what type of documents these clusters comprised. In all cases, the ten randomly
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(a) (b)

Figure 5.6: Representative documents from the two largest clusters in the GOV2 collection:

(a) 512,030 documents (b) 155,684 documents.

selected documents were identical, validating that the clusters were not in any way anomalous

but rather were genuine content-equivalent documents. Figure 5.6 shows examples of the

documents composing the two largest clusters, which were of 512,030 and 155,684 documents

in size respectively.

5.7 Equivalence in search results

Not all documents are created equal; some documents contain much more information than

others, or information of a higher quality, or information that is pertinent to a wider variety

of queries. Document access patterns are extremely skewed, such that some documents are

accessed extremely frequently and others rarely or not at all (Garcia et al., 2004). For

example, the documents that appeared in the largest sets discussed in Section 5.6.2 would

be relevant to few queries and as such accessed rarely.

Thus, in order to truly assess the impact of content equivalence on the search experience,

we must examine its prevalence amongst the types of documents that are actually returned

in response to typical queries. Particularly, we are interested in the level of content equiva-

lence amongst documents that are judged relevant, as significant redundancy amongst such

documents could contribute to overestimates of system effectiveness.

In order to make the above investigations, we made use of the relevance pool of the 2004

TREC terabyte track (see Section 2.4.1). We also use the 70 official runs submitted to the

TREC 2004 terabyte track to estimate the impact that redundant documents are having on

the quality of real search results.
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5.7.1 The QRELS collection

The primary task in the TREC 2004 terabyte track (for which the GOV2 collection was

compiled) was a standard ad hoc search. Participants were given 50 queries; a run consisted

of a ranked list of 10,000 GOV2 documents for each of the queries. The top 85 documents

from each ranked list submitted were added to a judgement pools (see Section 2.4.1) for the

50 queries (TREC topics 701–750). These documents were assessed by human judges.

We compiled all the documents from the 2004 judgement pools to create a subcollection

of the GOV2 collection that we call the QRELS collection. It consists of 58,078 documents

and is 2.8 GB, or nearly one-sixth of the total size of GOV1. Note that the QRELS collection

does not contain only relevant documents; rather, it contains both relevant and non-relevant

documents for each of the queries, as judged by the assigned judges.

The documents in the QRELS collection were retrieved by real search systems in response

to the carefully formulated TREC topics and as such have demonstrated that they are likely

to be documents of high worth, retrieved frequently. The signal-to-noise ratio is expected to

be much higher in the QRELS collection than amongst the GOV2 collection as a whole. We

note that the average size of a document in QRELS is 49.3 KB, or 2.8 times larger than the

collection average of 17.7 KB.

5.7.2 Equivalence in the QRELS collection

A total of 23.9% of all documents in the QRELS collection were found to exhibit content

equivalence with at least one other document, but for some queries the figure was far higher.

Only a minority of the content-equivalent documents are retrieval-equivalent. This shows

that content equivalence has a real effect on search results. Compared to the GOV1 collection,

the ratio between retrieval-equivalent and conditionally equivalent documents is far higher.

We hypothesize that this is because the extremely large retrieval-equivalent clusters inflate

the degree of retrieval equivalence in the collection. Documents in such clusters are likely to

be machine-generated and of low value with respect to most common queries.

Figure 5.7 shows the degree of document redundancy — the proportion of documents

that can be eliminated for a given query because they can be represented by an equivalent

document — on a per-topic basis. The lower histogram shows the percentage of all relevant

documents for each topic that are redundant, while the upper histogram displays the same

data for irrelevant documents. Topic 703 was not included in the final TREC judgements,

accounting for the absence of results for that query. Taken across all queries, the mean
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Figure 5.7: The proportion of redundant documents for each topic amongst the relevant (lower

graph) and nonrelevant (upper graph) judged pools. Note that query 703 is absent from the

TREC judgements.

percentage of redundant documents amongst the relevant set was 16.6%, while the mean

amongst the irrelevant set was 14.5%. If we consider only retrieval-equivalent documents,

mean redundancy amongst the relevant and irrelevant sets is 2.3% and 4.0% respectively.

Note that these percentages exclude the first document in each cluster; only subsequent, and

hence redundant, documents are counted.

The very large difference between the proportion of redundant relevant documents de-

tected by the retrieval equivalence and the fingerprinting methods suggests that many of

these document pairs do have some point of difference, in contrast to the large clusters of

low-value documents captured by the retrieval equivalence technique. This outcome serves

to emphasize the importance of using a sensitive technique like fingerprinting even more

emphatically than the results in Section 5.6.1.

We note that the observed incidence of content equivalence in the QRELS collection

is lower than in the GOV2 collection as a whole. This is not surprising, as much of the

content equivalence in the GOV2 collection occurred on low-value documents, such as the

server-generated error pages and search forms that occurred in the large sets discussed in

Section 5.6.2. Despite this, redundant documents still represent a significant proportion of

all documents in both the relevant and nonrelevant judged sets of the QRELS collection.

The fact that, on average, 16.6% of documents that have been judged to be relevant are

redundant means that the user will in many cases be viewing relevant documents that they

have seen before. These documents, though relevant to the topic, are no longer useful to the

user as they are entirely lacking in novelty. This suggests that effectiveness figures calculated
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for the terabyte track runs could be substantial overestimates of the user experience, and

that the user experience could be significantly improved by removing instances of redundant

documents from result lists.

5.7.3 Equivalence and search performance

We have claimed that document redundancy has a negative effect on the effectiveness of

search. In this section we attempt to quantify the extent of this effect by examining the level

of inter-document redundancy occurring in the official runs submitted to the 2004 TREC

terabyte track.

We reiterate the novelty principle discussed earlier: a document, though relevant in

isolation, should not be regarded as relevant if it is equivalent to a document the user has

already seen. At the very least, a system should not be rewarded for presenting multiple

copies of the same document, even if it is relevant. In order to model this principle, we

modified the official judgements for each run so that documents appearing in a result list

after another document with which they were content-equivalent were marked as irrelevant,

regardless of their judged relevance status.

In order to discount the effect of poorly performing runs we adopted the methodology

used by Voorhees and Buckley (2002) and Sanderson and Zobel (2005) and discarded the

bottom 25% of runs, leaving us in this case with 54 runs. We used the trec eval tool for

evaluation and recorded the MAP for each of the runs.

Evaluating the TREC runs as submitted resulted in an average MAP across the runs

of 0.201. When the novelty principle was modelled as described above, the average MAP

fell to 0.161, a relative reduction in MAP of 20.2%. This is a substantial difference, and

demonstrates that the assumption of independent relevance is inflating effectiveness scores,

and that redundant documents almost certainly have a significant impact on the user expe-

rience of search. In a scenario where we are exploring the effect of eliminating redundant

documents, it is clear that 0.161, not 0.201, is the correct baseline for comparison.

To simulate an information retrieval system that is aware of content-equivalent docu-

ments, we modified the runs so that documents appearing after another document with

which they were content-equivalent were removed from the result list. The average MAP

increased to 0.186, a relative 16.0% improvement compared to our baseline, demonstrating

that an equivalence-aware retrieval system should be able to substantially improve the user’s

search experience.



138 CHAPTER 5. MANAGING REDUNDANCY IN WEB SEARCH

5 10 15 20 25 30 35 40 45 50

TREC Submission

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

TREC result

Equivalent docs removed

Equivalent docs marked irrelevant

Figure 5.8: MAP on TREC queries 701-750 for the 54 most successful runs submitted to

the 2004 terabyte track. The first column is the official MAP result, the second column

shows MAP if subsequent content-equivalent documents are marked nonrelevant, and the

third column shows MAP with the same documents removed from the run.

That the improvement is, by construction, observed in every query with redundant an-

swers and that the degree of improvement is closely coupled to the degree of redundancy

observed in the QRELS collection does nothing to invalidate this result. We note that re-

dundant answers can add no weight to a user’s confidence in information. We also note

that this improvement is obtained on the same underlying collection and on the same set of

redundancy-modelled relevance assessments.

These results are presented in graphical form for each of the individual runs in Figure 5.8.

In all cases the official MAP result overstates the effectiveness of the run. Interestingly,

both the degradation in MAP from rendering redundant documents irrelevant and the im-

provement brought by removing duplicates was greater for runs that showed overall better

effectiveness. We are unable to account for this phenomenon with a convincing explanation.

5.8 Inconsistency in relevance judgements

Equivalent documents should not vary with respect to their relevance; thus, either the pairs

were incorrectly classified as content equivalent or one of the documents in the pair was

erroneously judged. This provides a convenient opportunity to assess the overall consistency

of relevance assessments for the TREC 2004 terabyte track.

All documents that were connected by content-equivalence relationships were aggregated

into a single group. Any group in which not all documents received the same relevance

judgements was identified as containing an inconsistency. We manually examined 20 ran-
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domly selected groups that had been inconsistently judged and found that in all cases the

judgements ought not to have disagreed.

In total across all queries there were 465 groups where judgements were inconsistent.

Within these groups, 791 documents were judged relevant and 681 were judged nonrelevant.

Assuming for the sake of argument that the majority of judgements in each group were

correct, on average across all groups 3.8% of the judgements (522 of 13,854) were incorrect. If

we consider only the set of potentially relevant documents — that is, the set of all documents

that are either relevant or form part of an inconsistent group — we have 522 erroneous

judgements out of 4,013 documents, an error rate of 13.0%.

This evidence seems incontrovertible: content-equivalent documents have been frequently

classified by the same judge as being both relevant and irrelevant. We have no evidence of

assessment quality for the documents that do not have a content equivalence relationship

with any other documents, but there is no reason to suppose that the general degree of

judgement accuracy for these other documents is any higher.

5.9 Conclusions

Inter-document redundancy in ranked lists is a significant problem for search engines, leading

to a degradation in the user experience. However, the failure of common ranking or evaluation

models to take redundancy into account in determining effectiveness has led to a distorted

situation in which redundancy and duplication are implicitly encouraged. Current models

under which redundancy is taken into account during the ranking and evaluation processes

are too complex and error-prone for general use.

In this chapter we have defined and explored a restricted class of inter-document redun-

dancy that we call content equivalence. We contend that the presence of content-equivalent

documents in a result list is not in general of benefit to the user. Document fingerprinting

was shown via a user study to be a robust method for identifying content-equivalence be-

tween documents. Using our method, we found that over 17% of documents in GOV1 were

non-unique under content equivalence, more than double the figure of the stricter retrieval

equivalence. Almost 25% of GOV2 was redundant under retrieval equivalence. Our analysis

of judged documents and extrapolation from GOV1 suggests that as many documents again

may be non-unique under content equivalence.

We also showed that content-equivalence has a significant impact on actual search re-

sults from a wide variety of search methodologies, with the failure of current evaluation
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methodologies to model redundancy meaning that the effectiveness of runs submitted to the

2004 TREC terabyte track was overestimated by at least 20%. The corollary to this is that

purging content-equivalent documents from results lists ought to lead to an improvement in

effectiveness. However, the failure of current evaluation metrics to take the negative effect

of redundancy into account means that removing content equivalent documents from result

lists actually lowers measured effectiveness. In order to negate this unbalanced situation,

we introduced a variant of MAP in which redundant documents were considered to be ir-

relevant. A new set of experiments using this redundancy-aware evaluation metrics revealed

that management of redundancy improved measured effectiveness by an average of 16.0%

over the 54 best-performing runs submitted to the 2004 TREC terabyte track.

Disturbingly, our study exposes a significant degree of inconsistency in the human rel-

evance judgements used for evaluating the performance of search algorithms in the TREC

terabyte track.
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GX013-60-6825144: Irrelevant

GX005-13-16310498: Relevant

Figure 5.9: An example of two content-equivalent documents that have been inconsistently

judged in query 725 of the 2004 TREC terabyte track.



Chapter 6

Applications of fingerprinting in

genomics

This chapter contains material that appeared in Cameron et al. (2006a), Bernstein and

Cameron (2006), and Cameron et al. (2006b) and is based on research conducted in collabo-

ration with fellow PhD candidate Michael Cameron. I adapted the deco package to process

genomic sequence data and provided an implementation of the slotted spex approach. Michael

Cameron implemented the clustering algorithm and adapted BLAST to search clusters defined

by our method. We contributed equally to the invention of the slotted spex algorithm and

our scheme for managing redundancy using union-sequences and wildcards, and to the exper-

imental evaluations presented in this chapter. We both made contributions to the writing of

the original papers, text from which appears in this chapter.

As with collections of web documents, comprehensive genomic databases such as the

GenBank non-redundant protein database (NR) contain — despite the name — extensive

internal redundancy. Although exact duplicates are removed from the collection, there remain

large numbers of near-identical sequences. This phenomenon has various causes, including

the existence of closely-related homologues or partial sequences, sequences with expression

tags, fusion proteins, and sequencing errors. These minor sequence variations lead to the

over-representation in databases of certain protein domains, particularly those that are under

intensive research. For example, the GenBank protein database contains several thousand

near-identical protein sequences from the human immunodeficiency virus (HIV).

142
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Inter-sequence redundancy in genomic databases has several negative consequences. As

in text search, redundancy can lead to highly repetitive search results for any query that

matches closely with an over-represented sequence, increasing the user burden in interpreting

the results. Furthermore, sequence homology search algorithms such as BLAST are non-

indexed, and hence orders of magnitude slower than indexed search. Larger databases lead to

a noticeable increase in search time; as sequencing efforts continue to outpace improvements

in computer processing speed, this effect will become increasingly problematic.

A problem unique to algorithms such as BLAST is that large-scale redundancy can have

the effect of skewing the statistics used for determining alignment significance, ultimately

leading to decreased search effectiveness. Profile-based distant homology search tools such

as PSI-BLAST (see Section 2.8.3) can also be misled by redundant matches during iteration,

causing them to bias the profile towards over-represented domains. This can result in a less

sensitive search or even profile corruption (Li et al., 2002; Park et al., 2000).

Redundancy in genomic databases has in general been managed by the creation of

representative-sequence databases (RSDBs), culled collections in which no two sequences

share more than a given level of identity. RSDBs are built by grouping into clusters all

sequences that exceed a given threshold for mutual redundancy, and then choosing a single

representative from each of these clusters. This process requires that the degree of redundancy

between every pair of sequences in the database be computed according to some appropriate

metric such as alignment score.

Previous studies have investigated a range of approaches to identifying all pairs of highly

similar sequences in a collection. Most of the proposed techniques execute significantly faster

than a näıve application of query-based algorithms such as BLAST, which takes several

days to process a protein database of 100 MB on a modern desktop computer. However,

a majority of these algorithms have a fundamental O(n2) complexity in the size of the

collection, rendering them increasingly impractical as genomic databases continue their rapid

growth. Malde et al. (2003) have investigated the use of suffix structures (see Section 2.6.1)

to efficiently identify high-identity pairs in a single pass of the collection. This approach

does not suffer from the quadratic complexity problem; however, the significant resource

consumption of these structures renders them unsuitable for large genomic collections.

In this chapter we describe how document fingerprinting can be used to reduce the com-

plexity and execution time of the RSDB construction process. We discuss the challenges

faced in adapting fingerprinting to genomic sequences, and propose a new selection heuristic,

slotted spex, that is better suited to this domain. While slotted spex is a lossy algorithm,
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it offers a performance guarantee that is not generally available from other selection heuris-

tics. We empirically verify that document fingerprinting using slotted spex is accurate and

discriminative for identification of sequence pairs with a high degree of identity.

We find that, using document fingerprinting as a preprocessing step, we are able to build

a RSDB from the GenBank non-redundant database in around 1.5 hours; the fastest existing

approach, CD-HIT (Li et al., 2001a), requires over 9 hours for the same task. Furthermore,

using fingerprinting we observe a flatter growth in execution times when compared to CD-

HIT. Importantly, there is no significant change in the quality of the resultant RSDB.

Having demonstrated that fingerprinting can be used as a fast and accurate method for

detecting redundancy in genomic sequence databases, we turn our attention to the way in

which redundancy is managed. RSDBs produce compact databases leading to faster searches,

and have been shown to significantly improve profile training in iterative search tools such as

PSI-BLAST. However, they also have significant deficiencies. In particular, RSDBs do not

represent a comprehensive record of all sequences originally present in the database. This

leads to search results that are both less accurate, because the representative sequence for a

cluster may not be the one that aligns best with a given query, and less authoritative, because

the user is only shown one representative sequence from a family of similar sequences. In

many cases, the effectiveness of searches conducted on RSDBs is lower than the effectiveness

of the same search conducted on the source (redundant) database.

In Section 6.5 we describe a novel way of building and representing clusters of redundant

sequences, and accompanying modifications to BLAST for searching databases stored using

this representation. Importantly, our representation avoids the deficiencies of RSDBs. In-

stead of discarding near-duplicate sequences, we identify clusters of redundant sequences and

construct a special union-sequence that represents all members of the cluster through the

use of wildcard characters. When combined with a well-chosen set of wildcards and a sys-

tem for scoring matches between wildcards and query residues, our approach leads to faster

search times without a significant loss in accuracy. Moreover, by recording the differences

between the union-sequence and each cluster member using edit information, our approach

compresses the collection. Our scheme is generic and can be used to improve search times

on most homology search tools.

We have integrated our new redundancy management strategy with our freely available

open-source software package, FSA-BLAST. When applied to the GenBank NR database,

our method reduces the size of sequence data in the database by 27% and improves search

times by 22% with no significant effect on accuracy.
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6.1 Existing approaches to redundancy management

In this section we examine existing approaches to the two problems of redundancy man-

agement in genomic sequence databases: first, how to identify sequences that are mutually

redundant; and second, once redundant sequences have been identified, what to do about

them.

6.1.1 Redundancy identification

The first stage of most redundancy management algorithms involves identifying pairs of

highly similar sequences. An obvious approach to this task is to align each sequence in the col-

lection with each other sequence using a pairwise alignment scheme such as Smith-Waterman

local alignment (Smith and Waterman, 1981). This is the approach taken by several existing

clustering algorithms, including d2 cluster (Burke et al., 1999), OWL (Bleasby and Woot-

ton, 1990), KIND (Kallberg and Persson, 1999), and that of Itoh et al. (2004). However,

this approach is impractical for collections of significant size. Each pairwise comparison is

computationally intensive and the number of pairs grows quadratically in the number of

sequences.

Several schemes, including CLEANUP (Grillo et al., 1996), NRDB90 (Holm and Sander,

1998), RSDB (Park et al., 2000), CD-HI (Li et al., 2001b) and CD-HIT (Li et al., 2001a),

use a range of BLAST-like heuristics to quickly identify high-scoring pairwise matches. The

CLEANUP (Grillo et al., 1996) algorithm builds a rich inverted index of short substrings or

words in the collection and uses this structure to score similarity between sequence pairs.

NRDB90 (Holm and Sander, 1998) and RSDB (Park et al., 2000) use in-memory hashtables

of decapeptides and pentapeptides for fast identification of possible high-scoring sequence

pairs before proceeding with an alignment. CD-HI (Li et al., 2001b) and CD-HIT (Li et al.,

2001a) use lookup arrays of short subsequences to more efficiently identify similar sequences.

Such methods can significantly reduce the per-pair comparison time, but do nothing to alter

the O(n2) time complexity of the algorithms.

Many of the above schemes attempt to reduce the number of pairwise sequence compar-

isons by using a greedy incremental clustering approach, which interpolates the redundancy

identification and RSDB construction stages. To begin, the collection sequences are sorted

by decreasing order of length. Then, each sequence is considered in turn and used as a query

to search an initially-empty representative database for high-scoring matches. If a similar

sequence is found, the query sequence is discarded. Otherwise, it is added to the database as
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the representative of a new cluster. When the algorithm terminates, the database consists of

the representative (longest) sequence of each cluster. While this technique can significantly

reduce the number of pairwise sequence comparisons that need to be made, it still retains

the unfavourable O(n2) time complexity that afflicts all direct pairwise-comparison methods.

We show in Section 6.6 that CD-HIT — the fastest of the greedy incremental algorithms

mentioned and the most successful existing approach — scales poorly, exhibiting superlinear

time complexity in the size of the collection.

ICAass (Parsons, 1995) and the method of Itoh et al. (2004) reduce the number of pair-

wise comparisons by partitioning the collection according to phylogenetic classifications and

clustering only sequences within each partition. This reduces the number of pairwise compar-

isons. However, the approach assumes that the database has been pre-classified and ignores

possible matches between taxonomically distant species. Further, the number of phylogenetic

divisions is growing at a far slower rate than database size. Therefore, a quadratic growth

rate in computation time remains a limitation.

One way to avoid an all-against-all comparison is to pre-process the collection using an

index or suffix structure that can be used to efficiently identify high-scoring candidate pairs.

Malde et al. (2003) and Gracy and Argos (1998) investigated the use of suffix structures

(see Section 2.6.1) to identify groupings of similar sequences in linear time. However, suffix

structures also consume significant resources and are thus not an ideal choice for processing

large sequence collections such as GenBank on desktop workstations. Malde et al. (2003)

report results for only a few thousand EST sequences; the algorithm described by Gracy

and Argos (1998) requires several days to process a collection of around 60,000 sequences.

External suffix structures, which record information on disk, are also unsuitable: they use

a large amount of disk space and are either extremely slow for searching, or have slow

construction times (Cheung et al., 2005).

6.1.2 Redundancy management

The common practice for the management of inter-sequence redundancy in genomic sequence

databases to build representative-sequence databases (RSDBs). In this approach, clusters of

highly similar sequences are grouped into clusters. Once a set of clusters has been identified,

one sequence from each cluster is selected as the representative of that cluster to be inserted

into the RSDB; the rest are discarded (Holm and Sander, 1998; Park et al., 2000; Li et al.,

2001b;a). In the case of greedy incremental clustering, the clusters are built incrementally
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during the pairwise similarity comparison. In either case, the result is a representative

database with fewer sequences and less redundancy.

However, purging near-duplicate sequences can significantly reduce the quality of results

returned by search tools such as BLAST. There is no guarantee that the representative

sequence from a cluster is the sequence that best aligns with a given query. Therefore, some

queries will fail to return matches against a cluster that contains sequences of interest, which

reduces sensitivity. Further, results of a search lack authority because they do not show the

best alignment from each cluster. Also, the existence of highly-similar alignments, even if

strongly mutually redundant, may be of interest to a researcher.

Itoh et al. (2004) describe an alternative redundancy management technique. Their

approach builds clusters of sequences and selects a cluster representative in a similar manner

as for RSDBs. However, non-representative members of each cluster are retained in the

database instead of being deleted. For each cluster, an upper bound is calculated on the

difference in score between aligning a query to any sequence in the cluster and aligning it to

the chosen representative. During search, the query is compared only to the representative

sequence of each cluster. The upper bound is added to the resulting alignment score and if

this increased score exceeds the scoring cutoff, all sequences in that cluster are individually

aligned to the query.

While the above approach ensures there is no loss in sensitivity, it comes at a substantial

cost: unless a high scoring threshold is used during search — Itoh et al. use a nominal score

cutoff of 150 in their experiments — there will be numerous false positives, causing search

to be slowed. They report experiments using Smith-Waterman (1981) alignment and it is

unclear if their approach would work well if applied to a heuristic search tool such as BLAST.

In addition, all sequences are retained by their method, so no space is saved.

6.2 Fingerprinting for genomic sequences

In this section we describe how document fingerprinting techniques can be adapted for re-

dundancy identification in the domain of genomic sequences. By so doing, we can eliminate

the need for exhaustive pairwise comparison of sequences in the database, and significantly

improve the speed of the clustering process.

The spex algorithm (and, indeed, any fingerprinting algorithm) can be trivially adapted

for use with genomic sequences by simply substituting an appropriate chunk parser. However,

the properties of a genomic sequence are quite different from those of a natural language
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document. The most significant difference is the lack of any higher-order structure in genomic

data — in particular, the absence of words. The protein sequences we consider in this

paper are represented as an undifferentiated string of amino-acid characters with no natural

delimiters such as whitespace, commas, or other punctuation marks.

The absence of any structure analogous to words in genomic sequences has several imme-

diate impacts on the operation and performance of fingerprinting and the spex algorithm.

First, the granularity of the sliding window must be increased from word-level to character-

level. This will result in significantly more chunks being extracted from a genomic sequence

than from a natural-language document of the same size. As a result, the spex algorithm

must work harder to process genomic databases when compared to text collections.

Another domain-specific issue is that the distribution of subsequences within genomic

data is less skew than the distribution of words in natural-language text. Given a collection

of natural language documents, we expect some words (such as ‘and’ and ‘or’) to occur

extremely frequently, while other words (such as perhaps ‘alphamegamia’ and ‘nudiustertian’)

will be hapax legomena: words that occur only once. This permits the spex algorithm to

be effectual from the first iteration by removing word pairs such as ‘nudiustertian news’. In

contrast, given a short string of characters using the amino acid alphabet of size 20, it is far

less likely that the word will occur only once in any collection of nontrivial size. Thus, the

first few iterations of spex are likely to be entirely ineffectual.

A simple solution to these problems is to introduce ‘pseudo-words’, effectively segmenting

each sequence by moving the sliding window several characters at a time. However, this

approach relies on sequences being aligned along segment boundaries, rendering the algorithm

highly sensitive to insertions and deletions. Consider, for example, the following sequences

with a chunk length of four and a window increment of four:

Sequence Chunks

Sequence 1 ABCDEFGHIJKLMNOP ABCD EFGH IJKL MNOP

Sequence 2 AABCDEFGHIJKLMNOP AABC DEFG HIJK LMNO

Sequence 3 GHAACDEFGHIJKLMQ GHAA CDEF GHIJ KLMQ

Despite all three of these sequences containing an identical subsequence of length 11 (in bold

above), they do not share a single common chunk. This strong correspondence between the

three sequences will thus be overlooked by the algorithm.

We propose a hybrid of regular spex and the pseudo-word based approach described

above, which we call slotted spex. Slotted spex uses a window increment greater than one
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Algorithm 2 The slotted spex algorithm

chunkLength ←− finalLength - Q × (numIterations - 1)

for iteration ←− 1 to numIterations

foreach sequence in the collection

foreach chunk of length chunkLength in sequence

if lookup[chunk] 6= 0 then

increment lookup[chunk]

else

count number of subchunks of length chunkLength - Q

where lookup[subchunk] = 2+

if count ≥ 2 or iteration = 1 and

number of chunks processed since increment lookup ≥ Q then

increment lookup[chunk]

increment chunkLength by Q

but is able to ‘synchronise’ the windows between sequences so that similar sequences are not

entirely overlooked as a result of a window-boundary misalignment.

Algorithm 2 describes the slotted spex algorithm. As in standard spex, we pass a fixed-

size window over each sequence with an increment of one. However, unlike spex, slotted

spex does not consider inserting every chunk into the hashtable. In addition to decomposing

the chunk into subchunks and checking that the subchunks are non-unique, slotted spex

also requires that one of two trigger conditions be met: either that at least Q window

increments have occurred since the last insertion, or that the current chunk already appears

in the hashcounter. The parameter Q is the quantum, which can be thought of as the window

increment used by the algorithm. Slotted spex guarantees that at least every Qth overlapping

substring from a sequence is inserted into the hashtable. The second trigger condition —

that the chunk already appears in the hashcounter — provides the synchronisation that is

required for the algorithm to work reliably.

The operation of slotted spex is best illustrated with an example. Using the same set of

sequences as above, a quantum Q = 4 and a chunk length of four, slotted spex produces the

following set of chunks:
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Sequence Chunks

Sequence 1 ABCDEFGHIJKLMNOP ABCD EFGH IJKL MNOP

Sequence 2 AABCDEFGHIJKLMNOP AABC ABCD EFGH IJKL MNOP

Sequence 3 GHAACDEFGHIJKLMQ GHAA CDEF EFGH IJKL

For the first sequence, the set of chunks produced does not differ from the näıve pseudo-word

technique. Let us now follow the process for the second sequence. The first chunk — AABC

— is inserted as before. When processing the second chunk, ABCD, the number of chunks

processed since the last insertion is one, fewer than the quantum Q. However, the condition

lookup[chunk] 6= 0 on line 5 of Figure 2 is met: the chunk has been previously inserted. The

hashcounter is therefore incremented, effectively synchronising the window of the sequence

with that of the earlier, matching sequence. As a result, every Qth identical chunk will be

identified across the matching region between the two sequences. In this example, the slotted

spex algorithm selects two chunks of length four that are common to all sequences. Slotted

spex also differs from regular spex by incrementing the word length by Q rather than by

one between iterations.

In comparison to the ordinary spex algorithm, slotted spex requires fewer iterations,

consumes less memory and builds smaller indexes. This makes it suitable for the higher

chunk density of genomic data. While slotted spex is a lossy algorithm, it does offer the

following guarantee: for a window size finalLength and a quantum Q, any pair of sequences

with a matching subsequence of length finalLength + Q - 1 or greater will have at least one

identical chunk selected. As the length of the match grows, so will the guaranteed number

of common chunks selected. Thus, despite the lossiness of the algorithm, slotted spex is still

able to offer strong assurance that it will reliably detect highly similar pairs of sequences.

6.3 Fingerprinting for identity estimation

In this section, we analyse the performance of slotted spex for distinguishing sequence pairs

that have a high level of identity from those that do not.

Following Holm and Sander (1998) and Li et al. (2001a), we calculate the percentage iden-

tity between a pair of sequences by performing a banded Smith-Waterman alignment (Chao

et al., 1992) using a band width of 20, match score of 1, and no mismatch or gap penalty.

The percentage identity I for the sequence pair 〈si, sj〉 is calculated as I = S(si, sj)/L(si, sj)

where S(si, sj) is the alignment score and L(si, sj) is the length of the shorter of the two

sequences. This score can be functionally interpreted as being the proportion of characters
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Figure 6.1: Index size as a function of final chunk length and quantum (left) and average

precision as a function of final chunk length and quantum (right)

in the shorter sequence that match identical characters in the longer sequence. We define

sequence pairs as being redundant if they have at least 90% identity (I ≥ 0.9). This is

the same threshold used in Holm and Sander (1998) and is the default parameter used by

CD-HIT (Li et al., 2001a).

For experiments in this section we use version 1.65 of the ASTRAL Compendium (Chan-

donia et al., 2004), because it is a relatively small yet complete database that allows us to

experiment with a wide range of parameterisations. The ASTRAL database contains 24,519

sequences, equating to 300,578,421 unique sequence-pair combinations. Of these, 139,716 —

less than 0.05% — have an identity of 90% or higher by the above measure. This is despite

the fact that the database is known to have a high degree of internal redundancy. The vast

majority of sequence pairs in any database can be assumed to be highly dissimilar.

Although we do not expect fingerprinting to be as sensitive and accurate as a computa-

tionally intensive dynamic-programming approach such as Smith-Waterman, we hope that

the method will effectively distinguish sequence-pairs with a high level of identity from the

large number of pairs that have very low identity. Our aim is to use document fingerprinting

to massively reduce the search space within which more sensitive analysis must be pursued.

To find a good compromise between resource consumption and effectiveness, we have

experimented with different parameter combinations. We monitored the size of the index

generated by spex, as well as its average precision, for each of these parameterisations. For

the effectiveness measure, we precomputed the identity of all sequence-pairs on the ASTRAL

database, and treated all pairs with an identity of 90% or above as being ‘relevant’. We then

ranked the sequence-pairs detected by the fingerprinting algorithm by their percentage of
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matching chunks, and computed the average precision (Buckley and Voorhees, 2000) for this

list.

Figure 6.1 (left) shows spex index size as a function of the chunk length and quantum

parameters. The results show that increasing the word length does not result in a large re-

duction in index size, but increasing the quantum results in a marked and consistent decrease

in the size of the index.

Figure 6.1 (right) plots the average precision (Buckley and Voorhees, 2000) as a function

of chunk length and quantum. We observe that increasing the chunk length results in a small

loss in accuracy, but that increasing the quantum has almost no effect on average precision.

This is an encouraging and somewhat surprising result. As a quantum of one is equivalent

to the normal spex algorithm, our experiments support the conclusion that fingerprinting

using slotted spex can be used to identify sequence identity nearly as well as the regular

spex algorithm. Using slotted spex with a higher quantim results in reduced memory use,

smaller index size, and faster index processing time. Thus, using slotted spex, we are able

to trade a tolerably small loss in accuracy for a marked in gain in efficiency.

We mention one caveat in interpreting the results of these experiments. The graphs of

Figure 6.1 make a strong case for using a shorter word length. However, shorter words place a

greater loading on the hashcounter. With larger collections, memory bounds can lead to the

hashtable flooding and a consequent blowout in index size. Thus, shorter word lengths are

less scalable. Similarly, longer quanta are in general beneficial to performance. However, a

larger quantum reduces the number of iterations possible in slotted spex. Thus, a very high

quantum can result in more collisions in the hashcounter due to fewer iterations, suggesting

once again that a compromise is required. Guided by these observations along with the

other data, chunk lengths of 25 or 30 with a quantum of 5 to 9 appear to provide a good

compromise between the various considerations.

The high average precision results indicate that slotted spex provides an accurate and

sensitive prediction of whether sequence pairs have a high level of identity. What is partic-

ularly surprising is that the average precision stays high even with reasonably long chunk

lengths and high quanta. Earlier efforts by Holm and Sander (1998), Li et al. (2001a), and

Li et al. (2001b) are extremely rigorous and rely upon short matching chunks, typically less

than ten characters in length, between sequence-pairs before proceeding with alignment. Our

results indicate that previous approaches were unnecessarily conservative, and that making

major efficiency gains by using longer chunk lengths has only a minor impact on result quality.

In our experiments we have focused on identifying sequence-pairs with greater than 90%
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identity, and we have shown that fingerprinting is effective at this task. However, it is

probable that fingerprinting will prove less useful as the identity threshold is lowered.

6.4 Removing redundant sequences: an application

In this section we demonstrate that fingerprinting can be used to significantly hasten the

construction of RSDBs. Fingerprinting is used to determine a list of candidate pairs whose

score according to the fingerprinting scheme exceeds a specified threshold. The identity

of these candidate pairs is then calculated exactly; all other pairs are assumed to have an

identity level below the required threshold. From this point, the standard clustering process

is used to group redundant sequences together. However, a vast majority of the pairwise

alignments are avoided as a result of the fingerprinting stage.

We measured the performance and scalability of our approach by comparing it to the

greedy-incremental algorithm CD-HIT (Li et al., 2001a) — which is freely available for down-

load — using several releases of the comprehensive GenBank NR protein database dating

from July 2000 to August 2005, as described in Table 6.1.1 In all cases we built RSDBs using

the standard identity threshold of 90%. For tests with CD-HIT we used default parameters

except for max memory which we increased to 1.5 GB. For our approach, we used a target

chunk length of 25, a quantum of 9 and 3 iterations. Our threshold for identifying a candi-

date pair is one matching chunk between the pair. We use this low threshold because our

experience showed that it leads to improved accuracy with a negligible increase in execution

time. In our experiments with the ASTRAL database and our chosen default parameters,

slotted SPEX identifies only 10,143 false positives out of a total of 147,724 sequence pairs

identified. This represents a negligible computational burden.

The results in Table 6.1 show no significant difference in RSDB size between our method

and CD-HIT, indicating the two approaches are roughly equivalent in terms of accuracy.

Figure 6.2 shows the runtime for our approach and CD-HIT for the releases of GenBank

tested. A visual inspection reveals that our approach exhibits a near-linear growth rate over

the data sets tested, while CD-HIT is clearly superlinear. When processing the August 2005

collection, our approach is more than 6 times faster than CD-HIT.

Note that these results do not allow us to draw any conclusions regarding the asymptotic

behaviour of our approach, which may indeed be superlinear. However, as our data sets were

1Ideally, we would have had more datapoints for this experiment. However, old releases of the NR database

are not officially maintained, and thus we could only find four different releases of the database.
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Original Size reduction

Release date Size (MB) CD-HIT Our approach

16 July 2000 157 61.71 MB (39.56%) 61.72 MB (39.57%)

22 May 2003 443 164.38 MB (37.33%) 165.07 MB (37.48%)

30 June 2004 597 217.80 MB (36.71%) 218.76 MB (36.87%)

18 August 2005 900 322.98 MB (36.08%) 324.92 MB (36.30%)

Table 6.1: Reduction in collection size for CD-HIT and our approach for various releases of

the GenBank NR database.
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Figure 6.2: Time required to identify and remove redundant sequences from various releases

of the GenBank NR database.

representative of the size of collections to which RSDB-construction algorithms are currently

applied, it is reasonable to assert that the behaviour of our approach is roughly linear in the

size of the input.

6.5 Redundancy management using wildcards

RSDBs are valuable in situations where resources are limited or the user is impatient. They

are also valuable for profile-based distant homology search tools like PSI-BLAST. However,

they are a blunt instrument: sequences are simply discarded from the database, leaving no

trace. This is not ideal if the user wishes to search a comprehensive database, or needs

to know the full history of a sequence. Worse still, the sequence in the original database
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that matches a query best may have been discarded when the RSDB was built. In general

homology search, RSDBs tend to be less effective than searches on a comprehensive database.

In this section we describe our novel approach to the management of redundancy in

genomic sequence databases that does not possess the deficiencies and drawbacks of RSDBs.

Rather than choosing a single representative sequence from each cluster, we use a set of

wildcard characters to create a single union-sequence that is simultaneously representative

of all the sequences in the cluster. A small amount of auxiliary data stored with each cluster

allows for the original sequences to be recreated.

During search, the query sequence is aligned with the union-sequence of each cluster. For

those union-sequences that produce a statistically significant alignment, the members of the

cluster are restored from their compressed representations and aligned to the query. This

ensures that precise alignment scores are calculated. Our approach supports two modes of

operation: users can choose to see all high-scoring alignments, or only the best alignment

from each cluster. The former mode returns results that are indistinguishable from the result

of a search against the comprehensive database, while the latter mode reduces redundancy

in the results, reducing the user burden in interpreting the results.

The effectiveness of our technique depends upon the careful construction of clusters, the

availability of a sensitive but efficient way of scoring the query sequence against the union-

sequence, and the selection of a good set of wildcards. We describe our approach to these

matters in Sections 6.5.2, 6.5.3, and 6.5.4 respectively.

6.5.1 Cluster representation

We define E = {e1, ..., en} as the set of sequences in a collection where each sequence is

a string of residues ei = r1...rn | r ∈ R. Our approach represents the collection as a

set of clusters C, where each cluster contains a union-sequence U and edit information

for each member of the cluster. The union-sequence is a string of residues and wildcards

U = u1...un|ui ∈ R ∪W where W = {w1, ..., wn | wi ⊆ R} is the set of available wildcards.

Each wildcard represents a set of residues and is able to act as a substitute for any of these

residues. By convention, wn is assumed to be the default wildcard wd that can represent any

residue; that is, wn = R.

Figure 6.3 shows an example cluster constructed using our approach. The union-sequence

is shown at the top and cluster members are aligned below. Columns in which the member

sequences differ from each other are shown in bold face; these positions in the cluster are
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KNQVAMN * QNTVFDAKRLIGRKFDEPTVQADMKHWPFKV * QAEVDV * RFRSNT * ER (union-seq)

PQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156103)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156105)

QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVLRFRSNTKER (gi 156121)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVLRFRSNTK (gi 552059)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552055)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTRE (gi 552057)

PQNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVLRFRSNTKER (gi 156098)

QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVLRFRS (gi 156100)

VFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTRE (gi 156111)

NQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552056)

Figure 6.3: Example cluster of heat shock proteins from GenBank NR database. The union-

sequence is shown at the top, followed by ten member sequences with GI accession numbers

shown in brackets.

represented by a wildcard. In this example, W = {wd} — that is, only the default wildcard

is used. It is represented in the figure by an asterisk.

When a cluster is written to disk, the union-sequence — shown at the top of the figure — is

stored in its complete form, and each member of the cluster is recorded using edit information.

The edit information for each member sequence includes start and end offsets that specify

the range within the union-sequence that is occupied by that particular sequence, and a set of

residues that replace the wildcards in that range. For example, the first member of the cluster

with GI accession 156103 would be represented by the tuple (8,44,PI). The member sequence

can be reconstructed by copying the substring between positions 8 and 44 of the union-

sequence and replacing the wildcards at union-sequence positions 8 and 40 with characters

P and I respectively. Note that our clustering approach does not permit gaps as insertions

and deletions are heavily penalised during alignment. Thus, any scheme that includes gaps

in clusters will contain clusters in which cluster members may have significantly different

alignment scores with respect to a given query. This makes it impossible for alignment

against the union-sequence to be used to accurately predict the scores of the sequences it

represents.
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6.5.2 Clustering algorithm

In this section we describe our approach to efficiently clustering large sequence collections

using fingerprinting with the slotted spex algorithm. As in the RSDB construction algorithm

described in Section 6.4, we use fingerprinting as a preprocessing step to identify candidate

pairs. Given the list of candidate pairs, we use a variation on single-linkage hierarchical

clustering (Johnson, 1967) to build clusters, as follows. Initially, each sequence is considered

to constitute a cluster with one member. Candidate pairs are then processed in increasing

order of similarity score, from most- to least- similar, and the pair of clusters that contains

the highly-similar candidate sequences are considered for merger.

In general, given two candidate clusters CX and CY with union-sequences X and Y

respectively, the following process is used to determine whether the clusters should be merged:

1. X and Y are aligned and the sequence space partitioned into a prefix, an overlap region,

and a suffix.

2. The union-sequence candidate U for the new cluster is created by replacing each mis-

matched residue in the overlap region with a suitable wildcard w.

3. The union-sequence candidate U is accepted if the mean alignment score increase Q̄

in the overlap region is below a specified threshold T — this prevents union-sequences

from containing too many wildcards and reducing search performance.

If the clusters are merged, a new cluster CU is created consisting of all members of CX

and CY . This process is repeated for all candidate pairs. When inserting wildcards into the

union-sequence, if more than one wildcard is suitable then the one with the lowest expected

match score e(w) =
∑

R s(w, r)p(r) is selected, where p(r) is the background probability of

residue r (Robinson and Robinson, 1991) and s(w, r) is the alignment score for matching

wildcard w to residue r. Calculation of wildcard alignment vectors s(w, ·) is discussed in

Section 6.5.3, and the selection of the pool of wildcards W is discussed in Section 6.5.4.

The alignment score increase Q for a wildcard w is calculated as

Q(w) =
∑

R

s(w, r)p(r)−
∑

R×R

s(r1, r2)p(r1)p(r2) (6.1)

where s(r1, r2) is the score for matching a pair of residues as defined by a scoring matrix

such as BLOSUM62 (Henikoff and Henikoff, 1992). This value estimates the typical increase
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GRKVIMNEQNTQ

GRKV*MN*QNT*MF

GRKVIMNCQNTQ
VAMNPQNTVMF

GRKVIMNEQNTQ
GRKVIMNCQNTQ
GRKVIMN*QNTQ

VAMNPQNTVMF
VAMNPQNTVMF(union−sequence)

(union−sequence)

Cluster X sequence 1:

Cluster Y sequence 1:
Cluster Y sequence 2:

New cluster sequence 1:
New cluster sequence 2:
New cluster sequence 3:

(union−sequence)

Figure 6.4: Merge of two example clusters. Cluster X contains a single sequence and cluster

Y contains two sequences. A new cluster is created that contains members of both clusters

and has a new union-sequence to represent all three member sequences.

in alignment score one can expect by aligning a random query residue against w instead of

against the actual residue at that position.

Figure 6.4 illustrates the process of merging clusters. In this example, cluster X (which

contains one sequence) and cluster Y (which contains two sequences) are merged. A new

cluster containing the members of both X and Y is created, with a new union-sequence that

contains wildcards at residue positions where the three sequences differ.

The approach described above works extremely well for relatively small databases. How-

ever, as discussed in Section 3.9, the small number of long postings lists that commonly occur

in larger collections constitute a major bottleneck in processing, consuming a disproportion-

ate amount of execution time. We process postings lists with more than M entries — where

we use M = 100 by default — in a different, top-down manner before proceeding to the

standard hierarchical clustering approach discussed above.

The top-down approach identifies clusters from a list of sequences l that contain a

frequently-occurring chunk w as follows:

1. All sequences in l are loaded into main memory and aligned with each other.

2. An exemplar sequence is selected. This is the sequence with the highest average per-

centage identity to the other sequences in l.

3. A new cluster C is created with the exemplar sequence as its first member.
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Figure 6.5: Illustration of top-down clustering where sequences l = {S1, S2, S3, S4, S5} contain

the chunk RTMCS. Each sequence is compared to every other sequence in the list and the

sequence with the highest average percentage identity (S1) is selected as the first member of

a new cluster. Sequences S2 and S4 are highly similar to S1 and are also included in the

new cluster. The remaining sequences l = {S3, S5} are used to perform another iteration of

top-down clustering if |l| ≥M .

4. Each sequence in l is compared to the union-sequence of the new cluster. Sequences

where Q̄ < T are added to the cluster in order from most- to least- similar using the

approach we describe above.

5. All of the members of the new cluster C are removed from l and the process is repeated

from step 1 until |l| < M .

The top-down clustering is illustrated in Figure 6.5. In this example, a list of five se-

quences that contain the word RTMCS is processed using the top-down method. The sequence

S1 has the highest average percentage identity to the other sequences in l and is selected as

the exemplar. A new cluster is created with S1 as the first member, and sequences S2 and

S4 are subsequently added. The three members of the new cluster are removed from l, and

the process is repeated until |l| < M .

Once the postings list has been processed by the top-down method, the shortened list

is processed using the hierarchical clustering method described above. While the top-down

process is laborious, it need only be used rarely: on the August 2005 release of NR, top-

down clustering was necessary for fewer than 0.2% of the postings lists when using default

parameters.
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Wildcard residues Scoring vector

L A G S V E T K D P I R N Q F Y M H C W B Z X U

L,V,I,F,M 3 -1 -3 -2 3 -2 -1 -2 -3 -2 3 -2 -3 -1 2 0 4 -2 -1 -1 -3 -2 -1 -4

G,E,K,R,Q,H -2 -1 1 0 -2 3 -1 4 0 -1 -3 3 0 3 -3 -1 -1 3 -3 -2 0 2 -1 -4

A,V,T,I,X 1 2 -1 0 3 -1 3 -1 -2 -1 3 -2 -2 -1 -1 -1 0 -2 -1 -3 -2 -1 -1 -4

S,E,T,K,D,N -2 0 0 2 -2 2 2 2 4 -1 -2 0 4 1 -3 -2 -1 0 -2 -3 3 1 -1 -4

L,V,T,P,R,F,Y,M,H,C,W 1 -1 -2 -1 1 -1 1 -1 -2 2 0 1 -1 0 2 3 2 2 2 3 -2 -1 -1 -4

A,G,S,D,P,H -2 3 3 3 -1 0 0 0 2 2 -2 -1 1 0 -2 -2 -1 1 -1 -3 1 0 0 -4

All residues 1 1 1 2 1 2 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 -1 -3

Figure 6.6: Scoring vectors for the wildcards from Table 6.2. The set of residues represented

by each wildcard is given in the left-hand column. The scoring vector provides an alignment

score between each of the twenty-four amino acid symbols and that wildcard.

6.5.3 Scoring with wildcards

We have modified BLAST to work with our clustering algorithm as follows. Instead of

comparing the query sequence to each member of the database, our approach compares the

query only to the union-sequence representing each cluster, where the union-sequence may

contain wildcard characters. If a high-scoring alignment between the union-sequence and

query is identified, the members of the cluster are reconstructed and aligned with the query.

In this section we discuss how, given a set of wildcards W , we determine the wildcard scoring

vectors s(wi, ·) for each wi ∈W .

Ideally, we would like the score between a query sequence Q and a union-sequence U to

be precisely the highest score that would result from aligning Q against any of the sequences

in the cluster CU . This would result in no loss in sensitivity as well as no false positives.

Unfortunately, such a scoring scheme is not likely to be achievable without aligning against

each sequence in every cluster, defeating the purpose of clustering in the first place.

To maintain the speed of our approach, scoring of wildcards against residues must be on

the basis of a standard scoring vector s(w, ·) and cannot take into consideration any data

about the sequences represented by the cluster. Thus, scoring will involve a compromise

between sensitivity (few false negatives) and speed (few false positives). We describe two

such compromises below, and show how to combine them to achieve a good balance of

sensitivity and speed.

During clustering, wildcards are inserted into the union-sequence to denote residue po-

sitions at which the cluster members differ. Let us define S = s1...sx | si ∈ W where S is
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the ordered sequence of x wildcards substituted into union-sequences during clustering of a

collection. Each occurrence of a wildcard is used to represent a set of residues that appear in

its position in the members of the cluster. We define o ⊆ R as the set of residues represented

by an occurrence of a wildcard in the collection and O = o1...ox | oi ⊆ R as the ordered

sequence of substituted residue sets. The kth wildcard sk that is used to represent the set of

residues ok must be chosen such that ok ⊆ sk.

Our first scoring scheme, sexp, builds the scoring vector for each wildcard by considering

the actual occurrence pattern of residues represented by that wildcard in the collection.

Formally, we calculate the expected best score sexp as:

sexp(w, r) =

∑

k∈Pi

max
f∈ok

s(r, f)

|Pi|

where Pi is the set of ordinal numbers of all substitutions using the wildcard wi:

Pi = {j | j ∈ N, j ≤ x , sj = wi}

This score can be interpreted as the mean score that would result from aligning residue

r against the actual residues represented by the wildcard w. This score has the potential

to reduce search accuracy. However, it distributes the scores well, and provides an excellent

tradeoff between accuracy and speed.

The second scoring scheme, sopt, calculates the optimistic alignment score of the wildcard

w against each residue. The optimistic score is the highest score for aligning residue q to any

of the residues represented by wildcard w. This is calculated as follows:

sopt(w, r) = max
f∈w

s(r, f)

The optimistic score guarantees no loss in sensitivity: the score for aligning against a

union-sequence U using this scoring scheme is at least as high as the score for any of the

sequences represented by U . The problem is that in many cases the score for U is significantly

higher, leading to false-positives where the union-sequence is flagged as a match despite none

of the cluster members being sufficiently close to the query. This results in substantially

slower search.

The sexp and sopt scoring schemes represent two different compromises between sensitivity

and speed. We can adjust this balance by combining the two approaches using a mixture
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model. We define a mixture parameter, λ, such that 0 ≤ λ ≤ 1. The mixture model score

for aligning wildcard w to residue r is defined as:

sλ(w, r) = λ · sopt(w, r) + (1− λ) · sexp(w, r)

The score sλ(w, r) for each 〈w, r〉 pair is calculated when the collection is being clustered

and then recorded on disk in association with the collection. During a BLAST search, the

wildcard scoring vectors are loaded from disk and used to perform the search. An example

set of scoring vectors s(wi, ·) that were derived using our approach is shown in Figure 6.6.

We report experiments with varying values of λ in Section 6.6.

6.5.4 Wildcard selection

Having defined a system for assigning a scoring vector to an arbitrary wildcard, we now

describe a method for selecting a set of wildcards to be used during clustering. We assume

that one of these wildcards wn is the default wildcard that can be used to represent any

of the 24 residue and ambiguous codes, that is wn = R. The remaining wildcards must be

selected carefully: wildcards representing large residue sets can be used more frequently but

provide poor discrimination with higher average alignment scores and more false positives.

Conversely, small residue sets provide good discrimination but can be used less frequently,

thereby increasing the use of larger residue sets such as the default wildcard. Thus, we must

balance the tradeoff between sensitivity and applicability.

The first aspect of choosing a set of wildcards to use for substitution is to decide on the

size of this set. It would be ideal to use as many wildcards as necessary, so that for each

substitution si = oi. However, each wildcard must be encoded as a different character, and

this approach would lead to a very large alphabet. An enlarged alphabet would in turn

lead to inefficiencies in BLAST due to larger lookup and scoring data structures. Thus, a

compromise is required. The alphabet used by BLAST for protein representation consists

of 25 distinct codes. Each code is represented using 5 bits, permitting a total of 32 codes.

Thus, 7 character codes are unused. We have therefore chosen to use |W | = 7 wildcards, as

this is the maximum number that can be accommodated without increasing the size of the

encoding.

We have investigated two different approaches to selecting a good set of wildcards. The

first approach to the problem treats it as an optimisation scenario, and works as follows.

We first cluster the collection as described in Section 6.5.2 using only the default wildcard,
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Minimum alignment score Physico-chemical classifications

L,V,I,F,M L,V,I (aliphatic)

G,E,K,R,Q,H F,Y,H,W (aromatic)

A,V,T,I,X E,K,D,R,H (charged)

S,E,T,K,D,N L,A,G,V,K,I,F,Y,M,H,C,W (hydrophobic)

L,V,T,P,R,F,Y,M,H,C,W S,E,T,K,D,R,N,Q,Y,H,C,W (polar)

A,G,S,D,P,H A,G,S,V,T,D,P,N,C (small)

All residues All residues (default wildcard)

Table 6.2: Two different sets of wildcards to be used for clustering. Each list is sorted in

order from lowest to highest average alignment score A and contains seven entries including

the default wildcard. The left-hand list is selected to minimise the average alignment score A

using a hill-climbing strategy, and the right-hand list is based on the amino acid classifications

described in Taylor (1986).

ie. W = {wd}. We use the residue-substitution sequence O from this clustering to create

a set W ∗ of candidate wildcards. Our optimisation goal can then be defined as follows: we

wish to select the set of wildcards W ⊆ W ∗ such that the total average alignment score

A =
∑

w∈S

∑

r∈R

s(w, r)p(r) over all substitutions S is minimised. A lower value of A implies a

reduction in the number of high-scoring matches between a typical query sequence and union-

sequences in the collection, and consequently a reduction in the number of false-positives in

which cluster members are fruitlessly recreated and aligned to the query.

In selecting the wildcard set W that minimises A, we use the following greedy approach:

first, we initialize W to contain only the default wildcard wd. We then scan through W ∗

and select the wildcard that leads to the greatest overall reduction in A. This process is

repeated until the set W is filled, at each iteration considering the wildcards already in W in

the calculation of A. Once W is full, we employ a hill-climbing strategy where we consider

replacing each wildcard with a set of residues from W ∗ with the aim of further reducing A.

A set of wildcards was chosen by applying this strategy to the GenBank NR database.

The left-hand column of Table 6.2 lists the wildcards that were identified using this approach

and used by default for experiments reported in this chapter.

Our second approach to wildcard selection involves manually selecting wildcards to rep-

resent groups of amino acids with similar physico-chemical properties. We used the amino
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acid classifications described in Taylor (1986) to define the set of seven wildcards shown in

the right-hand column of Table 6.2. In addition to the default wildcard, six wildcards were

defined to represent the aliphatic, aromatic, charged, hydrophobic, polar, and small classes

of amino acids. We present experimental results for the two wildcard selection strategies in

the following section.

6.6 Results

In this section we analyse the effect of our redundancy management strategy on collection

size and search times.

A set of 8,759 test queries were extracted from the ASTRAL database such that no

two of the queries shared more than 90% identity. To measure search accuracy, each query

was searched against the ASTRAL database and the commonly-used Receiver Operating

Characteristic (ROC) score was used (Gribskov and Robinson, 1996). A match between

two sequences was considered positive if they came from the same superfamily as classified

by the SCOP database (Murzin et al., 1995; Andreeva et al., 2004). Otherwise, it was

considered negative. The ROC50 score provides a measure between 0 and 1, where a higher

score represents better sensitivity (detection of true positives) and selectivity (ranking true

positives ahead of false positives).

The SCOP database is too small to provide an accurate measure of search time, so we use

the GenBank NR protein database to measure search speed. The GenBank collection was

downloaded August 18, 2005 and contains 2,739,666 sequences in around 900 megabytes of

sequence data. Performance was measured using 50 queries randomly selected from GenBank

NR. Each query was searched against the entire collection three times with the best runtime

recorded and the results averaged. Experiments were conducted on a Pentium 4 2.8GHz

machine with 2 GB of main memory.

We used FSA-BLAST with default parameters as a baseline. To assess the clustering

scheme, the GenBank and ASTRAL databases were clustered and FSA-BLAST was config-

ured to report all high-scoring alignments, rather than only the best alignment from each

cluster. All reported collection sizes include sequence data and edit information but exclude

sequence descriptions. CD-HIT version 2.0.4 beta was used for experiments with 90% cluster-

ing threshold and maximum memory set to 1.5 GB. We also report results for NCBI-BLAST

version 2.2.11 and our own implementation of Smith-Waterman that uses the same scoring

functions and statistics as BLAST (Karlin and Altschul, 1990; Altschul and Gish, 1996).
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Figure 6.7: Search accuracy for collections clustered with varying values of λ and T . Default

values of λ = 0.2, T = 0.25 are highlighted.

The Smith-Waterman results represent the highest possible degree of sensitivity that could

be achieved by BLAST and provides a meaningful reference point. No sequence filtering was

performed for our experiments in this chapter.

Figure 6.7 shows the effect on accuracy for varying values of λ and T . We have chosen

λ = 0.2 as a default value because smaller values of λ result in a larger decrease in search

accuracy, and larger values reduce search speed. We observe that for λ = 0.2 there is little

variation in search accuracy for values of T between 0.05 and 0.3.

Figure 6.8 shows the effect on search times for varying values of T where λ = 0.2. As T

increases the clustered collection becomes smaller, leading to faster search times. However, if

T is too large then union-sequences with a high percentage of wildcards are permitted, leading

to an increase in the number of cluster members that are recreated and a corresponding

reduction in search speed. We have chosen the value T = 0.25 that maximises search speed.

The overall results are shown in Table 6.3. When used with default settings of λ = 0.2

and T = 0.25, and the set of wildcards selected to minimise alignment score in Table 6.2,

our clustering approach reduces the overall size of the NR database by 27% and improves

search times by 22%. Importantly, the ROC score indicates that there is no significant

effect on search accuracy. If users are willing to accept a small loss in accuracy, then the

parameters λ = 0 and T = 0.3 improve search times by 27% and reduce the size of the

sequence collection by 28% with a decrease of 0.001 in ROC score when compared to our

baseline. Since we are interested in improving performance with no loss in accuracy we do

not consider these non-default settings further. Overall, our clustering approach with default
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Figure 6.8: Average BLAST search time using λ = 0.2 and varying values of T .

parameters combined with improvements to the gapped alignment (Cameron et al., 2004)

and hit detection (Cameron et al., 2006c) stages of BLAST allow the speed of FSA-BLAST to

double that of NCBI-BLAST with no significant effect on accuracy. Both versions of BLAST

produce ROC scores 0.017 below the optimal Smith-Waterman algorithm.

The results in Table 6.3 also show that our scheme is an effective means of compressing

protein sequences, a task that has been deemed difficult by previous researchers (Nevill-

Manning and Witten, 1999; Weiss et al., 2000). Assuming a uniform, independent distribu-

tion of amino acids, protein sequence data can be represented with 4.322 bits per symbol

(Nevill-Manning and Witten, 1999). Our clustering scheme is able to reduce the space re-

quired to store protein sequence data in the GenBank non-redundant database to around 3.15

bits per symbol. To our knowledge, this is significantly less than the current best compression

rate of 4.051 bits per symbol (Nevill-Manning and Witten, 1999).

In Table 6.4 we compare search accuracy and performance for our two wildcard selection

strategies. In both cases, search performance was superior when compared to collections

clustered using only the default wildcard. This supports our approach of using multiple

wildcards to construct clusters. The set of wildcards that were selected using the machine-

optimisation strategy outperformed the wildcards chosen according to established physico-

chemical classifications This is not a surprising result; treating the selection of wildcards

as an optimisation problem allows us to choose those that have the greatest direct impact

on search performance. Nonetheless, it is interesting to note that the wildcards selected by

this process bear little resemblance to any of the traditional physico-chemical amino-acid
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Scheme GenBank NR ASTRAL

Time Sequence data

secs (% baseline) Mb (% baseline) ROC50

FSA-BLAST

No clustering (baseline) 28.75 (100%) 900 (100%) 0.398

Cluster λ = 0.2, T = 0.25 22.54 (78%) 655 (73%) 0.398

Cluster λ = 0, T = 0.3 20.97 (73%) 650 (72%) 0.397

NCBI-BLAST 45.75 (159%) 898 (100%) 0.398

Smith-Waterman — — 0.415

Table 6.3: Average runtime for 50 queries searched against the GenBank NR database, and

SCOP ROC50 scores for the ASTRAL collection.

taxonomies.

Figure 6.9 shows a comparison of clustering times between CD-HIT and our novel clus-

tering approach for four different releases of the GenBank NR database. Inspection suggests

that the clustering time of our approach is linear in the collection size and the CD-HIT app-

roach is superlinear (Figure 6.9). On the August 2005 release of the GenBank NR protein

database, CD-HIT is around nine times slower than our approach, and we expect this ratio

to increase further with collection size.

Table 6.5 shows the amount of redundancy in the GenBank NR database as it has grown

over time, measured using our clustering approach. We observe that the proportion of redun-

dancy within the collection is remaining approximately constant, at 27%–29% across versions

of the collection tested. This suggests that redundancy will continue to affect genomic data

banks as they grow further in size.

Figure 6.10 shows the distribution of cluster sizes on log-log axes for the GenBank NR

database. The linear distribution of the data points on these axes suggests that the sizes

follow a power-law distribution. Around 55% of clusters contain just two members, and the

largest cluster contains 488 members. Of the ten largest clusters identified by our approach,

five relate to HIV proteins, three relate to cytochrome b, one relates to elongation factor 1α,

and one relates to cytochrome oxidase subunit I. This supports our previous hypothesis that

levels of redundancy in the database are proportional to the interest in a research area.
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Figure 6.10: Distribution of sizes for clusters identified in the GenBank NR database.
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Wildcard set GenBank NR ASTRAL

Time Sequence data

secs (% baseline) Mb (% baseline) ROC50

Minimum alignment score 22.54 (78%) 655 (73%) 0.398

Physico-chemical classifications 23.25 (81%) 656 (73%) 0.398

Default wildcard only 23.49 (82%) 663 (76%) 0.398

Table 6.4: Average runtime and SCOP ROC50 scores for varying sets of wildcards. The first

two rows contain results for the wildcard sets defined in Table 6.2. The third row contains

results for clustering with only the default wildcard W = {wd}

Number of Collection Overall size Percentage

Release date sequences Size (MB) reduction (MB) of collection

16 July 2000 521,662 157 45 28.9%

22 May 2003 1,436,591 443 124 28.1%

30 June 2004 1,873,745 597 165 27.4%

18 August 2005 2,739,666 900 245 27.3%

Table 6.5: Redundancy in GenBank NR database over time.

6.7 Summary

Sequence databanks such as GenBank contain a large number of redundant sequences. Such

redundancy has several negative effects including larger collection size, slower search, and

difficult-to-interpret results. Redundancy within a collection can lead to over-representation

of alignments within particular protein domains, distracting the user from other potentially

important results. Furthermore, high levels of redundancy can lead to degraded performance

in iterative profile-based search tools such as PSI-BLAST.

We have applied document fingerprinting techniques to genomic data with the aim of more

efficiently identifying pairs of redundant sequences in large collections. We have described a

new algorithm that we call slotted spex. This algorithm requires less main memory and CPU

resources compared with regular spex when processing genomic collections. We show that

slotted spex is highly accurate for identifying high-identity sequence pairs, even when using

long chunk lengths and large quanta. We have also tested the effectiveness of our slotted
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spex approach for removing redundant sequences from large collections. When processing

the recent GenBank non-redundant protein database our scheme is more than six times faster

than the previous fastest approach, CD-HIT, with no significant change in accuracy. Further,

our approach scales approximately linearly with collection size.

We have proposed a new scheme for managing redundancy. Instead of discarding near-

duplicate sequences, our approach identifies clusters of redundant sequences and constructs

a special union-sequence that represents all members of the cluster through the careful use of

wildcard characters. We present a new approach for searching clusters that, when combined

with a well-chosen set of wildcards and a system for scoring matches between wildcards and

query residues, leads to faster search times without a significant loss in accuracy. Moreover,

by recording the differences between the union-sequence and each cluster member using edit

information, our approach compresses the collection. Our scheme is not dependent on the

implementation of a particular tool and thus can be adapted to most homology search tools.

We have integrated our algorithm into FSA-BLAST2, a new version of BLAST that is

substantially faster than NCBI-BLAST. Our results show that our clustering scheme reduces

BLAST search times against the GenBank non-redundant database by 22% and compresses

sequence data by 27% with no significant effect on accuracy. We have also described a new

system for clustering based on fingerprinting with the slotted spex algorithm. Our imple-

mentation can cluster the entire GenBank NR protein database in one hour on a standard

workstation and scales linearly in the size of the collection. We propose that pre-clustered

copies of the GenBank collection be made publicly available for download.

We have thus far confined our experimental work to protein sequences and plan to inves-

tigate the effect of our clustering scheme on nucleotide data as future work. We also plan to

investigate the effect of our approach on iterative search algorithms such as PSI-BLAST, and

how our scheme can be used to improve the current measure of the statistical significance of

BLAST alignments.

2FSA-BLAST is freely available for download at http://www.fsa-blast.org/



Chapter 7

Redundancy management for

distributed search

This chapter contains material that first appeared in Bernstein et al. (2006). and is based

on research conducted in collaboration with fellow PhD candidate Milad Shokouhi. I invented

the grainy hash vector data structure, wrote an implementation of the concept, and conducted

the experimental evaluations presented in this chapter. Milad contributed to the refinement

of the structure and to the design of the experiments. We both contributed equally to the

writing of the original paper, text from which appears in this chapter.

Management of redundancy in a distributed information retrieval (DIR) environment is a

critical issue. In addition to the standard problems of intra-collection redundancy discussed

in Chapter 5, we must contend with the issue of inter-collection redundancy or collection

overlap. In previous work in DIR, it has generally been assumed that the overall collection is

partitioned into disjoint subcollections at the various distributed sites (Callan and Connell,

2001; Nottelmann and Fuhr, 2003; Si and Callan, 2003a; 2004). This is not, in many cases, a

reasonable assumption. The decentralised nature of DIR systems means that there is no way

of coordinating the composition of individual collections in the system. Overlap (and hence

redundancy) between collections is nearly inevitable in any DIR system of significant size

and complexity. It has been suggested that tackling this issue is one of the most important

challenges in contemporary DIR (Allan et al., 2003).

Management of redundancy in a distributed environment is subject to additional con-

171
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straints that makes the approaches discussed in Chapter 5 impractical. The lack of central-

isation (both physical, and in terms of control) means that preprocessing of collections is

not an option; redundancy management must occur at query processing time. Thus, to be

usable in a DIR setting, a redundancy management technique must be economical both in

terms of its bandwidth consumption and computational effort. Of the current fingerprinting

approaches, chunking fails because it is too cumbersome and expensive to compute, while

deterministic term extraction fails because it relies on common collection statistics that are

not readily available in a distributed environment.

Some work in web-based meta-search engines has included efforts to eliminate exact

duplicate documents from the list of final results (Gauch et al., 1996; Meng et al., 2002;

Selberg and Etzioni, 1997; Zamir and Etzioni, 1999). However, the proposed techniques are

restricted to removing exact matches that refer to the same URL. This technique is quite

limited; in particular, it is only applicable to domains in which documents are identified by a

URL or some other unique identifier. Many domains have no concept of a unique identifier for

a document. Furthermore, the issue of non-identical redundant documents is not addressed

at all by this technique. To the best of our knowledge, more sophisticated measures for

filtering redundant documents in DIR have not previously been explored.

In this chapter we address for the first time the issue of robust detection of content equiv-

alence between documents in a distributed retrieval environment. We introduce a compact

feature, the grainy hash vector (GHV), that has properties that meet the requirements for

this problem domain. We analyse the properties of GHVs, and show empirically that they

can be used for efficient and accurate merge-time detection of content-equivalent documents.

7.1 Duplicates in distributed information retrieval

As discussed in Section 2.5, a DIR environment consists of several autonomous search systems

— or servers — and a search broker. A searcher interacts only with the broker; it is the role

of the broker to seamlessly interact with the autonomous servers that make up the search

environment and return a standard ranked list of documents to the user. In building a final

ranked list to return to the user, the broker must perform the resource selection and result

merger tasks, both described in Section 2.5.

Poor performance at either of these two tasks can have a detrimental effect on user

satisfaction. If promising servers are not identified at the server selection phase, many good

documents will never even be returned to the broker. If result lists are not carefully merged,
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then the ordering of documents in the ranked list can be far from optimal. Inter-document

and inter-collection redundancy can have a distorting effect on both of these operations. Just

as redundancy between documents affects their marginal worth to the user with respect to

each other, redundancy between collections can have a similar effect. There is little value

in selecting two collections that are highly mutually redundant, even if each collection is

valuable in isolation. Similarly, the presence of duplicate documents in ranked lists affects

the result merging process. As discussed in Chapter 5, it is not useful to return many copies

of the same relevant document.

The fact that redundancy has a negative effect at both the server selection and result

merging stages suggests that it ought to be managed at both. At the server selection stage,

the broker can avoid selecting servers that exhibit a high degree of collection overlap with

a server that has already been selected. For such an approach to be effective, the rate of

overlap between the collections underlying pairs of servers must be accurately estimated in

advance. Small estimation errors may lead to the loss of many relevant documents located

in the ignored servers.

Hernandez and Kambhampati (2005) introduced the cosco system, which manages du-

plicate documents at selection time. The system estimates the overlap between different

bibliographic servers and avoids selecting pairs of servers that have high overlap for the same

query. The system is trained using 90% of the queries in a log gathered by BibFinder.1

Using the training query set, the amount of overlap between servers of the same class is

calculated. The remaining 10% of the query log is then used to test the system. The cori

system (Callan et al., 1995) is used as a benchmark and it is shown that cosco finds more

relevant documents by selecting the same number of servers as cori. As in the other previous

work, cosco only considers exact duplicates. It also requires a large set of training queries

and is only tested on bibliographic data, which raises questions as to its general applicability.

For redundancy management to take place at the result merger stage, redundant docu-

ments must be identified within the merged result list and purged before the list is returned

to the user. We believe duplicate management at merge time is important even if the broker

makes use of inter-collection redundancy estimates at server selection time. This is because

redundant documents can be present at merge time even if their corresponding servers do

not have a significant rate of overlap. Furthermore, non-identical redundant document-pairs

can be more easily detected at this stage.

1http://kilimanjaro.eas.asu.edu/
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Although distributed search over servers with overlapping collections has been acknowl-

edged as a problem in many papers (Allan et al., 2003; Meng et al., 2002), no serious attempt

has been made to manage the problem at result merge time. ProFusion (Gauch et al., 1996),

MetaCrawler (Selberg and Etzioni, 1997), and Grouper (Zamir and Etzioni, 1999) all attempt

to eliminate exact duplicate documents from the final results. To do this, they simply aggre-

gate those results that point to the same location according to their URL. This method is

crude and has a number of deficiencies: it is ineffective for identical documents with different

URLs (such as mirrored documents), for near-identical documents, and for domains in which

a unique document identifier such as a URL is not available. Clearly, more sophisticated

techniques for redundant management are desirable.

7.2 Merge-time redundancy management for DIR

Since collections are not centrally managed, it is not practical to use a preprocessing app-

roach to redundancy management. Rather, it must occur at query time based on additional

document information transmitted to the broker. Thus, management of redundant docu-

ments is highly sensitive to both computational cost (because it must occur at runtime)

and bandwidth (because transmission of additional information in a distributed environment

may not be cheap). In this section, we consider the feasibility of using existing document-

fingerprinting techniques and features for this task.

The fingerprinting option that seems superficially most suitable to the requirements of

redundancy management in a DIR environment is deterministic term extraction, discussed

in detail in Section 3.7. The fact that each document only has a single representative hash

means that the additional bandwidth requirement in using deterministic term extraction

is minimal, and that comparisons between documents at runtime are quick, as all that is

required is an equality test between the two representative hashes. The hashes themselves

are cheap to compute at index time.

However, as discussed in Section 3.7, deterministic term extraction has its weaknesses.

While several empirical tests seem to show that deterministic term extraction techniques are

robust in practice (Chowdhury et al., 2002; Cooper et al., 2002; Kolcz et al., 2004), there

has been no theoretical analysis that would verify the claim of robustness. It always remains

the case that a single difference between a pair of documents, if it occurs in a critical term,

can cause the system to fail to identify them as redundant. Pugh and Henzinger (2003)

and Kolcz et al. (2004) fortify the robustness of the technique by extracting several hashes
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based on different term subsets. However, this has the effect of making deterministic term

extraction less appealing for the DIR domain, as it increases both the bandwidth cost and

the comparison cost at merge-time.

In addition to the reservations above, deterministic term extraction suffers from further

complications in the domain of DIR. The deterministic term extraction systems in the liter-

ature depend on knowing inverse document frequencies of terms, or some similar collection

statistics. In situations where there is a single collection, this presents very little difficulty.

However, in a distributed environment where collections may be physically scattered, syn-

chronising collection statistics is a significant challenge, and may be an expensive operation.

This is particularly true if individual collections in the system are dynamic. If statistics are

not synchronised, however, identical documents on different servers may produce different

hashes. Thus, it becomes necessary in a DIR context to use a term extraction heuristic that

does not use collection statistics. It is not apparent that this can be done while allowing the

technique to remain effective.

Chunking techniques are not particularly suitable for the DIR environment, as they gen-

erally require that a large number of chunks be retained and compared in order to achieve

reasonable effectiveness. In the DIR context, this translates to significant bandwidth require-

ments and high computational costs at the broker at merge-time.

However, the class of chunking functions that have a fixed resolution — that is, select

a fixed number of chunks no matter the document length — at least offer performance

guarantees. Of these, the minimal chunk sampling technique (Fetterly et al., 2003) has

two advantages that make it the best choice. The first is that because it is an ordered

vector of chunks rather than a simple bag or set, the computational cost for comparison

at query-time is reduced. The second is that it has clear statistical properties governing its

performance: the distribution of the number of matching hashes between a pair of documents

with resemblance r is binomial parameterised by r and by the size of the vector ρ. Using

this information we can easily calculate the expected performance of the scheme. For more

details refer to Section 3.6.5.

Fetterly et al. (2003) use ρ = 84 to generate a vector of 84 hashes of 32 bits each.

While such a vector would undoubtedly be a high-quality feature for detecting near-duplicate

documents, at 336 bytes per document it imposes a bandwidth premium that may be onerous

in many contexts, and requires a substantial computational effort to make a comparison.

Even if ρ were reduced substantially, the vector would still need to be several dozen bytes in

size to be effective for reliable identification of near-duplicate documents.
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7.3 Grainy hash vectors

In this section, we describe our novel document-digest feature for redundant document identi-

fication, the grainy hash vector (GHV). The GHV is a special implementation of the minimal-

chunk sampling technique described in Section 7.2. It includes innovations that combine the

benefits of regular minimal-chunk sampling with those of deterministic term extraction for

the domain of inter-collection redundancy management. In particular, grainy hash vectors:

• are designed to fit into a single machine word of either 32 or 64 bits;

• have analyzable theoretical properties;

• use bit-parallelism to allow fast comparison between vectors; and

• are robust in the presence of small differences between a pair of documents.

A grainy hash vector parameterised by n and w is a n-bit vector consisting of ρ w-bit

hashes, where

ρ(n, w) =
⌊ n

w

⌋

(7.1)

In general, w should be a factor of n in order to avoid wasting space in the vector. Each of the

hashes in the GHV is produced using the minimal-chunk sampling technique, as described in

Section 7.2. For example, a GHV with n = 32 and w = 2 would consist of 16 2-bit hashes,

each produced using the minimal-chunk sampling technique. By using small w, it is possible

to pack a large number of hashes into a small space. The tradeoff is, of course, that the

probability of collision at each point in the vector becomes non-negligible. In the case of very

small w, the collision probability can be quite high. However, we demonstrate that, with

an appropriate match threshold, GHVs can provide powerful discrimination of redundant

documents, even with n = 32.

When w is small, there will be an overwhelming bias in terms of the value of the minimal-

chunk hash. For w = 1, one would expect the minimal hash to have value 0 in most cases.

In order to remove this bias, a much larger w — for example 32 — is used for the initial

ordering of hashes from the document. Once the minimal hash value has been identified, the

w least-significant bits of this hash are stored in the GHV as the hash for the current field.

For two documents with resemblance r, the probability φ of a match between the hashes

at a given position in the GHV with vector-width w is given by the function:
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φ(r; w) = r + (1− r)(2−w) (7.2)

The first component of this function follows directly from the property of min-wise inde-

pendence, which results in the probability of a hash match between two documents with

resemblance r being equal to r. The second component is the probability that, in the case

that the two source chunks are not the same, a collision renders them identical in the hash

vector.

Given that these probabilities are independent for each field in the GHV, we note that

the number of matching fields between a pair of documents with resemblance r is governed

by a binomial distribution, parameterised as follows:

Bi(ρ(n, w), φ(r; w)) (7.3)

The following properties are thus directly derivable from the distribution:

P (X = k) =

(

ρ

k

)

φk(1− φ)ρ−k (7.4)

E(X) = ρφ (7.5)

σ2 = ρφ(1− φ) (7.6)

GHVs are used in conjunction with some threshold to determine whether a given pair of

documents should be considered content-equivalent. For example, we may have n = 32,

w = 2 and a threshold of 14, meaning that at least 14 of the ρ(n, r) = 16 hashes in the

corresponding vectors of a pair of documents must match for them to be considered near-

duplicates. Thus, we are interested in finding a set of parameters for our GHV that minimises

the error level.

Figure 7.1 displays a number of curves, derived directly from the binomial distribution,

showing the probability that the number of matching fields exceeds a given number for

various document resemblance values. While these graphs use w = 1, similar curves obtain

for different values of w. Introducing a threshold over GHVs effectively draws a vertical line

across these curves. Thus, the steeper the curves, the more precise the separation between

documents with high levels of resemblance and those with low resemblance. Naturally, the

64-bit GHVs are superior in this respect.
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Figure 7.1: Probability that the number of matching fields exceeds a value for (a) 32-bit and

(b) 64-bit hash vectors, w = 1 and various r.

7.3.1 Computing GHV similarity

The single-word nature of grainy hash vectors allows us to rapidly compute the number of

matches between a pair of vectors by taking advantage of hardware-level bit parallelism,

whereby bitwise operations are performed simultaneously on all bits in a word. We can use

the bitwise exclusive-or (xor) operator to identify the points in a pair of vectors that do not

match. The nature of the xor operator is such that the resultant vector will have a zero

value where the vectors match and a one value where there is a mismatch. For a GHV one

machine word in size, this operation is completed in a single instruction. An example of how

the xor operator can be used to quickly determine the number of matches between a pair of

GHVs is presented in Figure 7.2.
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10111001 00010100
XOR

00101100 10001110

10010101 10011010 8 matches

Figure 7.2: A demonstration of how the xor operator can be used to quickly compare two

16-bit GHVs with w = 1. The number of zero-bits in the resultant vector is equal to the

number of matches between the GHVs.

In the case of w = 1 we need only count the number of one-bits in the xor vector —

the population function — in order to determine the number of mismatches between the two

vectors. While current hardware does not usually implement this function directly, it can

still be computed efficiently either with the assistance of lookup tables or using a ‘divide-

and-conquer’ approach such as the one described by Warren (2002).2

If w is greater than one, the situation becomes more complicated. We cannot simply

count one-bits in the xor vector, but must count the number of fields in which there is at

least one mismatched bit. If w is a power of two then we can modify the xor vector so

that the number of 1-bits equals the number of mismatches in O(log w) time by using shift

operators to collapse all bits in each field onto a single bit.

7.4 Experimental evaluation

In this section we report on the results of experiments intended to validate the speed and

effectiveness of GHVs in removing duplicates and near-duplicates from result lists in practice.

For simplicity, this work uses the results from a centralised IR system. However, the results

are applicable to a DIR context.

We used the Associated Press (AP) newswire data, a subset of the TIPSTER collection

used for the TREC Ad Hoc retrieval track (Harman, 1993). The AP collection consists of

237,569 documents totalling 729 MB in size.

For each document in the AP collection we created 32 and 64 bit GHVs with w of 1, 2, 4,

and 8, using the fast hashing function described by Ramakrishna and Zobel (1997). We then

used deco to calculate the resemblance between all pairs of documents in the AP collection,

and the Zettair software3 with default settings to create a ranked result list of depth 1,000

2Many approaches for bit-level problems (including this one) can be found in Sean Eron Anderson’s manual

‘Bit Twiddling Hacks’: http://graphics.stanford.edu/∼seander/bithacks.html
3http://www.seg.rmit.edu.au/zettair/
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on the AP documents for each of the TREC topics 51–100.

For each topic we loaded the GHVs for the 1,000 documents appearing in the ranked

result list. Each pair of GHVs in this list were then compared using the algorithm described

in Section 7.3.1, resulting in 499,500 comparisons taking place. Those pairs with a number

of matching fields exceeding a threshold t were returned. This process was repeated for all

possible values of t.

7.4.1 Comparison efficiency

Performing the 499,500 GHV comparisons required for a full comparison of 1,000 results took

approximately 0.1 seconds on a 2.67 GHz Intel Pentium 4 desktop computer with 512 MB

RAM, using moderately optimised code. This figure did not vary significantly whether the

GHVs were 32 or 64 bits in length, and no matter the value of w. This suggests that memory

access costs dominated the very small number of register instructions required to process

each GHV pair. In comparison to the significant other costs present in a DIR system — in

particular network latency — we argue that this is a very reasonable cost to bear in order to

improve the user experience.

Note that the timings presented above are pessimistic, based on an assumption that the

GHVs for a full ranked list of 1,000 documents need all be compared to each other. This is

not generally necessary if the comparisons are undertaken in a ‘lazy’ fashion. Many search

systems present results incrementally, often ten at a time; we can take advantage of this

by only undertaking the GHV comparisons necessary to present the next page of results.

Much of the time — depending upon the level of redundancy in the ranked list and the

persistence of the user — this can reduce the number of comparisons required from hundreds

of thousands to just hundreds. Thus, we assert that the typical cost of merge-time GHV

comparison is negligible in comparison to the cost of other stages of the DIR process.

7.4.2 GHV accuracy

In Chapter 5 we established an S3 score of 0.58 as the threshold at which we consider a

document pair to be conditionally equivalent. As the use-case is essentially the same in the

current context, it is appropriate to adopt this threshold for the current set of experiments.

We thus calibrate the performance of GHVs against the previously evaluated performance

of deco with a fixed threshold of 0.58, rather than making a direct evaluation with a user

study.
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Figure 7.3: Recall-precision curves for various w and GHVs of size 32 bits

We define the recall of a particular parameterisation of GHVs to be the proportion of

document pairs identified as conditionally equivalent by deco that are also identified using

GHVs, and the precision as the proportion of all document pairs identified using GHVs

that are also identified as conditionally equivalent by deco. By altering the threshold for

the number of matching fields between a pair of GHVs before the corresponding documents

are classified as conditionally equivalent, we are able to obtain recall-precision curves over a

particular GHV parameterisation.4 It is important to bear in mind that these recall-precision

curves report fidelity with the behaviour of deco rather than a more direct measurement of

the effectiveness of GHVs.

Figure 7.3 shows mean recall-precision curves for the 50 TREC topics using 32-bit GHVs

and various values of w. As can be seen, the curve for w = 2 clearly dominates, followed

by w values of 1, 8, and 4. For w = 4 and w = 8, the precision level is inadequate for

use even at the lowest threshold levels. For w = 1 and w = 2, precision is adequate up to

a recall level of approximately 0.5, meaning that we can use 32-bit GHVs to detect about

half the content-equivalent document pairs in the result list without introducing a significant

false-positive problem.

Figure 7.4 shows the same curves when 64-bit GHVs are used. As expected, these curves

are significantly better than the corresponding curves for 32-bit GHVs. Interestingly, the

field widths dominate each other in the same order, with w = 2 performing best, followed

4Note that the threshold discussed here is different from the S3 threshold of 0.58, which is held static and

is only used for the purpose of comparison.
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Figure 7.4: Recall-precision curves for various w and GHVs of size 64 bits

by 1, 8 and 4. With w = 2 it is possible to achieve recall values of approximately 0.7 before

precision moves below 1.

The values represented in Figures 7.3 and 7.4 are probably underestimates of the true

effectiveness of GHVs in a distributed environment. The first reason for this is that intro-

ducing a hard S3 score cutoff of 0.58 introduces a distortion: if a pair of documents identified

as conditionally equivalent by a GHV happen to have an S3 score of 0.57, this will count as a

false positive. However, such a document pair has a reasonably high likelihood of being per-

ceived as conditionally equivalent if shown to a user. As future work, it would be beneficial

to conduct direct user experiments on the effectiveness of GHVs. The outcomes of the user

study would allow us to avoid the distortions and inaccuracies introduced by our current use

of an indirect metric.

The second reason why the effectiveness of GHVs is probably underestimated in this

study is that the perceived effectiveness of GHVs is heavily dependent upon the level of

duplication in the underlying collections. For a given parameterisation, one would expect a

relatively unvarying quantity of false positives as a result of collisions. However, the higher

the level of duplication in the underlying collections, the larger the number of duplicates that

will be correctly identified. Thus, for a given level of recall, GHVs will have a higher level of

precision on more redundant collections, leading to a recall-precision curve that sits higher

above the axis.

In this study we performed our analysis on the AP collection of newswire data, which
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exhibits a relatively modest amount of duplication compared to many common document

domains such as the web. Furthermore, we have not modelled the effect of collection overlap,

which would have resulted in a further increase in redundancy in a typical result pool.

Thus, one would expect that with the higher level of redundancy present in the envisaged

application domain for GHVs, their effectiveness in practice will be superior than suggested

by the results presented in this chapter.

Despite these considerations, it is apparent even from these initial experimental results

that GHVs are a practical and effective means for screening out all exact duplicate documents

and many near-duplicate redundant documents in a cooperative DIR setting. Based on our

experiments, we recommend a field width w of two for both 32- and 64-bit GHVs, although

it is unclear why this field width consistently outperformed all others that were tested.

7.5 Summary

Management of document redundancy has been cited as one of the major challenges facing the

DIR community (Allan et al., 2003). Duplication of documents occurs in DIR due to the same

phenomena that cause it to be a problem in centralised IR systems (see Chapter 5), but is

compounded by the effect of collection overlap. Despite the seriousness of this problem, it has

seen little in-depth investigation, and techniques typically used for redundancy management

in centralised IR systems do not translate well to the DIR domain.

In this chapter we have introduced a new data structure, the grainy hash vector (GHV),

that can be deployed in cooperative DIR systems for efficient and accurate merge-time detec-

tion of content-equivalent pairs. GHVs can be used to detect near-duplicates as well as exact

duplicates, have well-defined mathematical properties, and are a good fit for a decentralised

environment. GHVs can be independently constructed at index time at each site in the DIR

system, and only transmitted to the broker at query time. Due to their small size they place

little burden on bandwidth. We also present algorithms for efficiently detecting conditionally

equivalent document-pairs using GHVs. We demonstrate empirically on the TREC AP col-

lection that GHVs can be used to efficiently and effectively identify conditionally equivalent

document pairs at merge time.

Based on the work presented in this chapter, we believe that the GHV is a promising

structure for the management of redundancy in cooperative DIR environments. However,

they cannot in general be used in an uncooperative situation, as the system relies on the

creation and transmission of GHVs by servers on individual sites. Meeting the difficult
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challenge of effective redundancy management in the more general domain of uncooperative

DIR environments remains the subject of future research.



Chapter 8

Conclusions and future work

Redundancy is widespread in current collections of digital data. In this thesis we have studied

approaches to defining, detecting, and managing redundancy in the domains of web search,

sequence homology search, and cooperative distributed information retrieval. Our research

has highlighted the extent of the redundancy problem in these domains, and the inadequacy

of current common practice — if any — for its management. We have proposed practical and

effective redundancy management techniques in these domains, and demonstrated empirically

how they can lead to significant improvements in search-engine behaviour.

8.1 Conclusions

In this section we reiterate the major topics we covered in this thesis, and provide some

concluding remarks for each. We discuss our findings and contributions.

8.1.1 Fingerprinting for the discovery problem

There are numerous methods for finding documents that are co-derived with a specified doc-

ument. However, the management of redundancy in document collections in general requires

that we be able to identify all co-derived document pairs without the guidance of a query

document. This is the discovery problem. At present, only document fingerprinting tech-

niques have been proven feasible for this this problem. Fingerprinting operates by indexing

suitable features from documents, and using these features in order to classify document-pairs

as co-derivative.

The most popular document fingerprinting algorithms are based on chunking. However,

as the volume of features produced by the chunking process is large, only a subset of these

185
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features are retained for indexing. The selection algorithm that chooses which chunks to

retain has in the past been based on simple heuristics, which leads to a degradation in the

overall effectiveness and reliability of the fingerprinting process.

In Chapter 4 we introduced spex, a new chunk-selection algorithm that operates on a

more principled basis than earlier heuristics. Spex uses a novel and efficient iterative-hashing

process to select only those chunks that contribute to the identification of co-derivation

between documents in the collection. This results in an improvement to the tradeoff curve

for the fingerprinting process: we can choose equivalent effectiveness for fewer resources, or

superior effectiveness for equivalent resources. We also proposed improvements to the overall

fingerprinting process and implemented these in deco, our fingerprinting package.

In experiments, we found that spex did significantly reduce chunk-index size on many

typical collections. When comparing the effectiveness of the discovery process using spex

with the commonly-used modulo chunking heuristic, we found that spex was noticeably more

reliable. In particular, with careful parameter selection, spex was able to approach 100%

accuracy on our experimental testbed.

8.1.2 Redundancy management for web collections

The web offers numerous channels for both ad hoc and systematic duplication of content,

making it inevitable that a high degree of redundancy exists in web collections. In Chapter 5

we focused on the problem of redundancy management for web search, investigating both

the prevalence of redundancy in web collections and suitable ways in which to manage it.

Our user experiments established a correlation between the scores generated by a fin-

gerprinting system and actual user perceptions of redundancy; previously, this correlation

had been assumed. The experiments were the catalyst for the formulation of a new class

of redundancy — conditional content equivalence — that resulted in increased identification

accuracy and a different approach to redundancy management. The user experiments also

allowed us to select a sensible threshold to use for classifying document-pairs as redundant.

Having established parameters with the user evaluations, we then analysed two collections

crawled from the .gov domain on the web: the 18 GB GOV1 collection and the 426 GB

GOV2 collection. On the GOV1 collection we found that 17.3% of documents participate in

a conditional content equivalence relationship with another document in the collection. We

were unable to complete a fingerprinting run of the larger GOV2 collection due to resource

limitations, but an analysis using a simpler and less sensitive technique confirmed that the
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level of redundancy is at least 25% of the entire collection. This analysis uncovered some

extraordinarily large clusters of redundant documents, the largest of which consisted of over

500,000 documents. These results highlight the difficulty of crawling the web and confirm

the need for effective redundancy management in this domain.

We also analysed the impact of redundancy on ranked result lists returned by search

engines. Using the runs submitted to the ad hoc search component of the 2004 TREC

terabyte track we were able to examine the incidence of conditional content equivalence on

search results produced by a wide range of search engines and ranking methodologies. This

study confirmed that redundancy was a significant presence in these results.

An important finding in our study was that redundancy within ranked lists was more

prevalent amongst those documents that were judged relevant (16.6% redundancy) than

it was amongst those ranked non-relevant, for which the rate of redundancy was 14.5%.

One consequence of this is that traditional effectiveness measures such as MAP significantly

overestimate the actual amenity of these search results. By our estimates, the effectiveness

of submissions to the 2004 TREC terabyte track was being overestimated on average by a

relative 20%. Another consequence arising from current evaluation methodologies is that any

attempt to manage redundancy in search results leads to a decrease in the run’s measured

evaluation score. The lack of incentive under current evaluation methodologies does much to

explain the lack of attention paid to redundancy management in search engine research. This

is a significant oversight: we estimate that effective management of redundancy on the ranked

lists submitted to the 2004 TREC terabyte track would have resulted in an approximate 16%

improvement in true effectiveness.

8.1.3 Redundancy management for distributed information retrieval

Even more than in standard centralised information retrieval, redundancy management in

distributed information retrieval systems is a critical issue. Despite this, it has been over-

looked. In this context, traditional methods of redundancy management are impractical due

to the dispersed nature of the collections. We focus on cooperative distributed informa-

tion retrieval, in which the servers participating in the search network are able to provide

pertinent information to the search broker.

In Chapter 7 we introduced a new data structure, the grainy hash vector, that can

be precomputed for each document at its local server, and transmitted along with other

document information as part of the server’s response to a query. Grainy hash vectors are
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highly compact, and are designed in such a way that they can be rapidly compared at the

broker during the result-merger process. Our experiments show that grainy hash vectors can

be used to accurately detect more than half the content-equivalent pairs in a ranked list with

a negligible false-positive rate. This makes them the first data structures that are suitable

for detection of non-exact duplicates in cooperative distributed information retrieval.

8.1.4 Redundancy management for sequence homology search

In the area of sequence homology search, there is an established orthodoxy in the management

of redundancy within collections. Representative-sequence databases (RSDBs) are built by

starting with an existing collection, clustering all sequences exceeding a certain identity

threshold, and choosing only a single sequence from each cluster to act as its representative

in the RSDB. The current approach suffers from two principal problems: the first is that

current techniques for RSDB construction suffer from quadratic time complexity; the second

is that RSDBs — though they lead to faster search times, eliminate tiresome repetition

from ranked lists, and improve performance in certain specialised tools — generally cause a

degradation in overall search effectiveness. In Chapter 6 we presented new techniques that

largely solve both of these problems.

We investigated the use of document fingerprinting to identify pairs of sequences with

high identity in order to obviate the need for direct pairwise comparison. We introduced

slotted spex, a variant of the spex algorithm that is tailored to the data characteristics of

this domain. An evaluation of the ranking produced by our modified fingerprinting program

using the slotted spex algorithm alongside a list of sequence-pairs ranked by actual identity

values showed a strong correlation between the two, thus suggesting that fingerprinting is an

appropriate choice for building RSDBs. This intuition was confirmed by the creation of a

program based on this approach which was able to construct a RSDB from a 900MB sequence

collection in less than 11
2 hours, more than six times faster than existing approaches. Using

document fingerprinting, we were able to flatten the curve for RSDB construction time to

one that is approximately linear for the data sizes tested.

In order to address the problem of decreased search effectiveness incurred by use of

RSDBs, we introduced a more sophisticated approach to the management of redundancy in

genomic collections. In contrast with the RSDB approach, our strategy is non-destructive,

as all sequences are retained in the collection. As with the creation of RSDBs, we begin by

identifying clusters of sequences with a high degree of identity. However, instead of discarding
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all but one of the sequences, we make use of wildcards to create a single ‘union-sequence’

that is able to simultaneously represent all sequences in the cluster.

We described practical measures for clustering, wildcard selection, wildcard scoring, and

search using our new representation. Our approach proved effective at managing redundancy

and brought significant benefits. The clustered representation resulted in a 22% decrease in

search time on the GenBank NR database with no significant reduction in search effectiveness.

As an additional benefit, our representation achieved a form of compression: the on-disk

footprint of our clustered collection was 27% smaller than the standard representation.

8.2 Future work

In this thesis, we have introduced an improved mechanism for discovering redundancy in

document collections. We have analysed the impact of redundancy in several domains,

and proposed practical approaches to redundancy management in these domains. We have

demonstrated that our redundancy management strategies lead to real improvements in the

performance and effectiveness of information retrieval systems. However, there is still scope

for many improvements and extensions to the work presented in this thesis. We discuss a

range of potential areas for future research below.

8.2.1 Improved scalability of spex

The intended purpose of spex was to improve the scalability of document fingerprinting by

identifying and eliminating extraneous information before it had to be stored and processed.

It was successful at this task, and the ease with which the 18 GB GOV1 collection was

processed by spex demonstrated that it had reasonable scalability characteristics. However,

we have not successfully used spex to process the 426 GB GOV2 collection, due more to the

characteristics of the collection than its sheer size: the high degree of internal redundancy in

GOV2 meant that there was less extraneous information to be eliminated in this collection.

This highlights the fact that spex becomes decreasingly effectual as a collection becomes

increasingly redundant. On a collection in which every document is duplicated, spex is

completely ineffectual and its use represents a waste of resources.

Consequently, it is necessary to investigate ways of making the spex algorithm more

scalable and more robust with respect to variations in collection characteristics. One possi-

bility is to attempt to make use of lossy variants such as slotted spex, although it is unclear

how useful it would be in the natural-language domain. If it is not possible to improve the
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characteristics of spex, then it is necessary to look at alternative selection algorithms that

take a more robust approach to chunk selection than current alternatives.

8.2.2 Spex for dynamic collections

In its present form, spex is a ‘one-shot’ algorithm: it must process the collection in its

entirety. If the composition of the collection changes at any point — particularly if new

documents are added — spex must be run again on the entire collection. Thus, it is not

at present suitable for dynamic collections such as those that may be maintained by web

search engines or enterprises. It would be worthwhile to investigate the use of auxiliary data

structures and algorithms to allow spex to be used with dynamic collections.

8.2.3 Improved algorithms for the discovery problem

Another area in which the issue of scalability must be addressed is in the processing of

fingerprint indexes for the discovery problem. In Section 3.9 we discussed the problem of

the quadratic cost of postings-list expansion, and described existing solutions in some depth.

However, none of these solutions is particularly satisfactory in the general case. One still must

choose between a faithful but potentially intractable attempt to reproduce the relationship

graph, and a more efficient solution that grossly simplifies the nature of the co-derivation

relation. A solution that combines the fidelity of the former approaches with the efficiency

of the latter is a goal for future work.

In Chapter 6 we described a process that combined top-down and bottom-up processing

of the fingerprint index to build up clusters of sequences with high mutual identity. While

our algorithm was tailored for the particular application of building clusters that could be

represented by union-sequences with few wildcard substitutions, the approach can plausibly

be generalised. As a heuristic for efficient processing of indexes that still captures much of

the complexity inherent to a relationship graph, a modification of our clustering approach

merits further investigation.

8.2.4 Additional user experiments

In Chapter 5 our series of user experiments correlated scores obtained on deco to content

equivalence and conditional content equivalence. These experiments were valuable in allowing

us to make convincing and valid assertions about the degree of redundancy in ranked lists.

There are several areas in the thesis that would have benefited from further user evaluations.
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We made the claim in Chapter 5 that removing content-equivalent results from ranked

lists would have resulted in an estimated 16% improvement in search effectiveness. This

estimate is based on a double abstraction: first, that a document-pair exceeding a given

score in deco must necessarily be content-equivalent, and second, that MAP corresponds

directly to search effectiveness. The claim of improved effectiveness would have carried more

force if a direct user evaluation of this quantity had been performed.

In Chapter 7 we face a similar level of double-indirection when evaluating the effectiveness

of the grainy hash vector data structure. Rather than directly capturing the effectiveness of

grainy hash vectors in identifying content equivalence, we compared the outcome of using

grainy hash vectors with the output produced by deco. This resulted in a probable under-

estimate of the true performance of grainy hash vectors; a user study would allow us a more

accurate estimate of the true effectiveness of these data structures.

8.2.5 Redundancy management for distributed information retrieval

In Chapter 7 we proposed the grainy hash vector as a data structure that could be used

by cooperative distributed information retrieval systems in order to manage inter-collection

redundancy. However — save for the unlikely scenario that grainy hash vectors become a

standard component of all search engines — the approach is not possible for the more gen-

eral problem of non-cooperative distributed information retrieval. Thus, an investigation of

possible techniques for redundancy management in non-cooperative distributed information

retrieval is a logical extension of our existing work. This problem is a difficult one. In the

non-cooperative scenario, the broker must intelligently and efficiently manage redundancy

without having direct access to collections and with only minimal descriptive information

regarding the documents being managed.

8.3 Final Remarks

Advances in technology have put publication of documents into the hands of individuals, and

have simultaneously made duplication of data extremely easy. The combination of these two

phenomena means that redundancy of information has become pervasive in modern document

corpora. In this thesis, we have contributed new techniques for identifying redundancies

within large collections. We have used these tools to gain insight into the nature and impact of

redundancy on information retrieval in a number of domains, and have used these insights to

propose novel ways in which redundancy can be managed in order to improve the information
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retrieval process.
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M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.

Springer, 1997.
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Á. R. Pereira Jr. and N. Ziviani. Syntactic similarity of web documents. In R. Baeza-Yates,

D. Schwabe, J. Piquer, N. Ziviani, and L. Olsina, editors, Proc. Latin American Web

Congress (LA-WEB), pages 194–200, Sanitago, Chile, 2003. IEEE Computer Society.

J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In

W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors, Proc.

ACM-SIGIR Int. Conf. on Research and Development in Information Retrieval, pages

275–281, Melbourne, Australia, 1998. ACM Press.

W. Pugh and M. H. Henzinger. Detecting duplicate and near-duplicate files (United States

Patent 6,658,423), 2003.

M. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81, Center for

Research in Computing Technology, Harvard University, 1981.

M. V. Ramakrishna and J. Zobel. Performance in practice of string hashing functions.

In Proc. Databases Systems for Advanced Applications Symposium, pages 215–223, Mel-

bourne, Australia, Apr 1997.

R. Rivest. The MD5 message-digest algorithm, Apr 1992. RFC 1321.

S. Robertson and K. Sparck Jones. Relevance weighting of search terms. Jour. of the

American Society for Information Science, 27(3):129–146, 1976.

S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at TREC-3.

In Proc. Text Retrieval Conf. (TREC), pages 109–126, 1995.

S. E. Robertson. The probability ranking principle in IR. Readings in Information Retrieval,

pages 281–286, 1997.

A. Robinson and L. Robinson. Distribution of glutamine and asparagine residues and their

near neighbors in peptides and proteins. Proceedings of the National Academy of Sciences

USA, 88(20):8880–8884, 1991.



206 BIBLIOGRAPHY

J. J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor, The SMART

Retrieval System – Experiments in Automatic Document Processing, pages 313–323. Pren-

tice Hall, Englewood Cliffs, NJ, 1971.

I. Ruthven and M. Lalmas. A survey on the use of relevance feedback for information access

systems. Knowl. Eng. Rev., 18(2):95–145, 2003. ISSN 0269-8889.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,

Inc., New York, NY, USA, 1986.

M. Sanderson. Duplicate detection in the Reuters collection. Technical Report TR-1997-5,

University of Glasgow, 1997.

M. Sanderson and J. Zobel. Information retrieval system evaluation: Effort, sensitivity, and

reliability. In A. Moffat, G. Marchionini, J. Tate, R. Baeza-Yates, and N. Ziviani, editors,

Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Retrieval,

pages 162–169, Salvador, Brazil, 2005.

T. Saracevic. Relevance: A review of and a framework for the thinking on the notion in

information science. Jour. of the American Society for Information Science, 26(6):321–

343, 1975.

T. Saracevic. Evaluation of evaluation in information retrieval. In E. A. Fox, P. Ingwersen,

and R. Fidel, editors, Proc. ACM-SIGIR Int. Conf. on Research and Development in

Information Retrieval, pages 138–146, Seattle, Washington, 1995. ACM Press.

D. V. Sarwate. A note on universal classes of hash functions. Information Processing Letters,

10(1), 1980.

A. Schaffer, L. Aravind, T. Madden, S. Shavirin, J. Spouge, Y. Wolf, E. Koonin, and

S. Altschul. Improving the accuracy of PSI–BLAST protein database searches with

composition-based statistics and other refinements. Nucleic Acids Research, 29(14):2994–

3005, 2001.

S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for document

fingerprinting. In A. Y. Halevy, Z. G. Ives, and A. Doan, editors, Proc. ACM-SIGMOD

Int. Conf. on the Management of Data, pages 76–85, San Diego, California, 2003. ACM

Press.



BIBLIOGRAPHY 207

R. Sedgewick. Algorithms in C. Addison Wesley, 1998.

E. Selberg and O. Etzioni. The MetaCrawler architecture for resource aggregation on the

Web. IEEE Expert, 12(1):8–14, 1997.

C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,

27:379–423 and 623–656, 1948.
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